耐酸化保護層を形成した磁性膜被覆磁気力顕微鏡探針

加藤慶一·大竹充·二本正昭·稲葉信幸*·桐野文良** (中央大,*山形大,**東京藝大)

Magnetic Force Microscope Tip Prepared by Coating with Magnetic Film and Oxidation Protection Layer Keiichi Kato, Mitsuru Ohtake, Masaaki Futamoto, Nobuyuki Inaba^{*}, and Fumiyoshi Kirino^{**}

(Chuo Univ., ^{*}Yamagata Univ., ^{**}Tokyo Univ. Arts)

はじめに 磁気力顕微鏡(MFM)は磁気記録媒体な どの磁化状態解析に幅広く用いられている. MFM探 針は,一般的に,Siなどの非磁性探針に磁性膜を被覆 することにより作製され,観察試料から漏洩する磁場 勾配を探針で検出し,磁化状態を観察する.そのため, 探針形状に加えて,磁性探針の先端半径や磁性膜の酸 化状況などが観察分解能に大きな影響を及ぼす.しか しながら,被覆膜の酸化が探針性能に及ぼす影響につ いて検討した報告は殆どない.本研究では,耐酸化保 護層を形成することにより,酸化耐性に優れるMFM 探針の作製を試みた.

実験方法 膜被覆には, 超真空スパッタリング装置を 用いた.市販の先端半径4nmのSi探針に20nm厚の磁 性膜および2nm厚の保護層を被覆することにより MFM探針を作製した.磁性膜材料としてFeを,保護 層材料としてC,B,Siなどを用いた.また,比較の ため,保護層無しのMFM探針も作製した.恒温恒湿 槽を使用して磁性探針の酸化を行い,保存日数が分解 能に及ぼす影響を調べた.磁気力顕微鏡の分解能評価 では,真空排気型MFMを用いた.また,構造および 磁気特性の評価には,膜被覆時に同時にSi基板上に形 成した磁性膜を使用した.

実験結果 Fig.1にSi基板上に形成したC保護層有りお よび無しのFe膜の飽和磁化(M。)の酸化試験経過日数 依存性を示す.保護層無しの膜では,1日経過でMsが急 激に減少し、日数の増大に対応して継続的に減少する 傾向が確認される.一方,保護層有りの膜のMsは、ほ ぼ一定値を保っていることが分かる.次に、分解能評 価を行うために, 500~1800 kFCIで記録された試作垂直 媒体のMFM観察を行った. Fig. 2(a)に酸化試験前の保護 層無しのMFM探針を用いて観察を行った結果を示す. また, Fig. 2(b)には, 記録ビット像のパワースペクトル を示す. 1700 kFCI (ビット長: 14.9 nm) までは, ビッ ト像およびパワースペクトルにおけるピークを確認す ることが出来る (Fig. 2(a-4), (b-4)). しかしながら, 1800 kFCI (ビット長: 14.1 nm) で記録されたビットを識別す ることはできない (Fig. 2(a-5), (b-5)). したがって, 分 解能は 14.9/2=7.5 nm と 14.1/2=7.1 nmの間の 7.3±0.2 nm と評価できる. Fig.3 にC保護層有りおよび無しのMFM 探針の分解能の酸化試験経過日数依存性を示す.保護 層無しの場合、被覆磁性膜の酸化に伴い、分解能が低 下していることが分かる.一方,C保護層を用いること で、酸化耐性が向上し、恒温恒湿槽に保管を継続して も、分解能がほぼ一定に保たれていることが分かる. 当日は、保護層の種類が分解能の酸化耐性に及ぼす影 響についても報告する.

Fig. 1 Saturation magnetization values of Fe films without and with C protective layer deposited on flat Si substrates.

Fig. 2 (a) MFM images of a perpendicular recording medium observed by using an MFM tip coated with Fe film without C protective layer. (b) Power spectra analyzed for the magnetic bit images in (a).

Fig. 3 Resolutions of MFM tips coated with Fe films without and with C protective layer.