L1₀型構造を持つ FePt 合金薄膜の c 面配向精密制御

大竹充・板橋明・二本正昭・桐野文良^{*}・稲葉信幸^{**} (中央大,^{*}東京藝大,^{**}山形大)

Accurate Control of *c*-Plane Orientation of FePt Alloy Thin Film with L10 Structure Parallel to the Surface

Mitsuru Ohtake, Akira Itabashi, Masaaki Futamoto, Fumiyoshi Kirino, and Nobuyuki Inaba

(Chuo Univ., ^{*}Tokyo Univ. Arts, ^{**}Yamagata Univ.)

はじめに $L1_0$ 型構造を持つ FePt 規則合金は 6.6×10^7 erg/cm³ の高い K_u を示す. そのため、この合金薄膜は高密度磁気記録媒体や MRAM などへの応用に向けて盛んに研究されている. デバイス応用のため には、磁化容易軸である[001]方位 (*c* 軸)を面直一方向に制御する 必要がある. しかしながら、(001)配向の多結晶下地層、もしくは、 単結晶基板上に膜形成を行うと、*c* 軸が面直に向いた $L1_0$ (001)結晶に 加え、*c* 軸が面内に存在する $L1_0(100)結晶が膜中に混在する可能性が$ ある^{1,2)}. これまで、我々は、高基板温度製膜³⁾、もしくは、低温製 $膜後に熱処理⁴⁾を施すことにより、MgO(001)基板上に <math>L1_0$ 構造を持 つ40 nm 厚の FePt 膜を形成してきた. いずれの方法で形成した膜に おいても、 $L1_0(100)結晶が混在した. c 軸方位制御には、面直方向の$ 格子圧縮、もしくは、面内方向の膨張が有効であると考えられる.本研究では、MgO(001)基板上に低基板温度(200 °C)でエピタキシャル成長させた 2~40 nm 厚の不規則構造の単結晶 FePt 膜上に、2 nm厚の MgO キャップ層を形成した. その後、600 °Cの熱処理を施す $ことにより <math>L1_0$ 構造への規則化を促進させた. FePt 膜に対して約 10%の格子ミスマッチを持つ基板およびキャップ層で挟み込んだ状 態で規則化させることにより、面内方向の引っ張り応力を促進させ、 *c* 軸方向の精密制御を試みた.

実験方法 膜形成には超高真空 RF マグネトロンスパッタリング装置を用いた.構造評価には RHEED および XRD (20/ω スキャン面外および 20χ/φ スキャン面内測定)を用いた.表面形態観察には AFM, 磁化曲線測定には VSM を用いた.なお,L1₀(規則)と A1(不規則) 構造の基本結晶軸の方位は異なるが,本研究では,A1構造の表記法を用いて,L1₀構造を示している.

実験結果 $L1_0$ 構造の(001)および(100)面の構造因子は、それぞれ、 $S(f_{ht}-f_{fe})$ および 0 で表せる (S:規則度, f:原子散乱因子). そのた め、面外 XRD パターンにおいて、(001)超格子反射が観察されてい る場合、 $L1_0(001)$ 結晶が形成されていることを示し、面内パターン においても超格子反射が確認される場合、 $L1_0(100)$ 結晶も混在して いることを意味する.熱処理後のキャップ層無しおよび有りの 10 nm 厚の FePt 膜の XRD パターンを、それぞれ、Fig. 1(a)および(b)に 示す.キャップ層無しの膜に対しては、面外パターンだけでなく、 面内パターンにおいても、強度は弱いが(001)超格子反射が観察され ており、膜中に $L1_0(100)$ 結晶が混在していることが分かる. 一方、 キャップ層有りの膜に対しては、面外パターンにおいてのみ、超格 子反射が確認でき、 $L1_0(001)$ 結晶のみから構成されていることが分 かる.また、キャップ層無しおよび有りの膜の格子定数比および規 則度 (c/a, S) は、それぞれ、(0.9781, 0.58) および (0.9599, 0.82) であった.キャップ層を設けることにより、格子変形が促進され、 規則度も向上した.これらの膜の磁気特性を Fig. 2 に示す.いずれ の膜も、垂直磁気異方性を示しているが、キャップ層有りの膜の面 内磁化曲線の保磁力は、非常に小さいことが分かる.これは、 $L1_0(001)$ 結晶からのみ構成され、更により高い規則度を持つ FePt 膜 の磁気特性を反映した結果であると考えられる.当日は、FePt 膜厚 を変化させた場合の格子歪、c軸方位、規則度、および、磁気特性 の関係について、詳細に議論する.

Fig. 1 (a-1, b-1) Out-of-plane and (a-2, b-2) in-plane XRD patterns of 10-nm-thick FePt films (a) without and (b) with cap layers after annealing at 600 °C. The scattering vector of in-plane XRD is parallel to MgO[200].

 参考文献
 1) S. Jeong, T. Ohkubo, A. G. Roy, D. E. Laughlin, and M. E. McHenry: J. Appl. Phys., 91, 6863 (2002).

 2) Y. K. Takahashi, K. Hono, T. Shima, and K. Takanashi: J. Magn. Magn. Mater., 267, 248 (2003).

 3) M. Ohtake, S. Ouchi, F. Kirino, and M. Futamoto: J. Appl. Phys., 111, 07A708 (2012).

 4) A. Itabashi, M. Ohtake, S. Ouchi, F. Kirino, and M. Futamoto: EPJ Web Conf., 40, 07001 (2013).

Large grain size of Cr seed layer deposited on CrTi amorphous layer for future high K_u FePt-C granular medium

[°]Seong-Jae Jeon^{a)}, Shintaro Hinata^{a,b)}, Shin Saito^{a)}, and Migaku Takahashi^{a)} ^{a)}Tohoku University, ^{b)}JSPS Research Fellow (PD)

Introduction Hard disk drive industry has been evolved through the increase of the areal density before the emergence of the trilemma. Thermally assisted magnetic recording has been introduced as one of the prospective technologies for future recording media by using the L1₀ ordered FePt with high magnetocrystalline anisotropy (K_u) of 7×10^7 erg/cc¹). In order to use the L1₀ ordered FePt as the recording media, it is necessary to fabricate the granular type such as FePt-C medium whose magnetic grains are completely separated each other by the C boundaries. However, it is reported that the reduction of the signal to noise ratio (SNR) arise from the magnetic anisotropy field variation, which is caused by the angular distribution of the (002) sheet texture in the FePt medium²). Generally, the sheet texture of the crystalline film is known to be attributed to the epitaxial growth on crystalline underlayers. In this report, we proposed a new concept of the layered structure for reducing the angular distribution of sheet texture in FePt-C medium.

Concept of the layered structure The concept is to realize a highly oriented sheet texture in seed layer by promoting Frank-van der Merwe growth mode (layer by layer growth)³⁾. According to the initial state of the sputtering process when the sputtered atoms adhere to the surface of the crystalline film in liquid state, growth mechanism is determined by the wettability of the atoms. If the wettability is large enough, the atoms maximize the contact surface on the film that tremendously induces the epitaxial growth. Consequently, formation of the layer by layer fashion on the crystalline film namely, large grain, leads to the highly oriented sheet texture. Figure 1 shows a schematic of the new concept of the layered structure. The structure is consists of the magnetic layer (ML)/barrier layer (BL)/seed layer (SL)/texture inducing layer (TIL). Main function of each layer is as follows: TIL as determining the grain size, SL as contributing the highly oriented (002) sheet texture, BF as preventing the atomic diffusion between ML and SL by using MgO, and ML as FePt-C magnetic recording medium with the highly (002) sheet texture. The main issue in here, is to find out suitable materials for TIL and SL. M. Mikami reported that the grain size of seed layer would be changed depending amorphous layers under the oxygen process⁴⁾, suggesting that the grain size of seed layer would be changed depending

on the amorphous material. Since the Cr alloy material has small lattice misft, the material can be used as seed layer. Accordingly, both amorphous and Cr-alloy can be applied as TIL and SL. To obtain (002) texture of SL, it is necessary to change its surface energy. In addition Cr alloy material is widely used in FePt medium because of the small lattice misft with the MgO. To obtain (002) texture of SL, it is necessary to change its surface energy. Here, we tried to investigate the various samples. We applied substrate heating process to fabricate the large grain seed layer by using above TIL and SL materials.

Experimental results In order to fabricate the large grain seed layer, one example structure, Cr (SL) and CrTi (TIL). Stacking structure is following Cr(10) / CrTi(50) / Sub. Figure 2 shows the grain diameter (GD) and integrated intensity of sheet texture for Cr seed layers (I_{002}) as a function of the substrate temperature (T_{sub}) represented as red circle and black square. Here, GD was evaluated from Scherrer equation with (110) diffraction appeared in-plane XRD. As shown in the graph GD increases from 8 to 12 nm as increasing T_{sub} from 200 to 475 °C, and then decreases 12 to 11.5 nm as further increasing T_{sub} . Similar tendency was observed in I_{002} graph. Increase of I_{002} from 10 to 80 cps as increasing T_{sub} from 200 to 520 °C, and then decreases 80 to 25 cps as further increasing T_{sub} . These results suggested that the I_{002} is affected by the grain size of seed layer. In summary, we demonstrated increase of the grain size of Cr seed layer deposited on CrTi amorphous layer under the heat treatment.

<u>Reference</u> 1) Mark. H. Kryder *et al.*, *Proceedings of the IEEE* **96**, 1810, (2008). 2) Hai Li *et al.*, *J. Appl. Phys.* **115**, 17B744 (2014). 3) Seifert W *et al.*, *Prog. Cryst. Growth Charact.* **33** 423 (1996). 4) M. Mikami et al., *IEEE Trans. Magn.* **39**, 2258 (2003).

Fig. 1 Concept of the layered structure for reducing the (002) texture distribution of FePt-C medium.

Fig. 2 Grain diameter (GD) and integrated intensity of sheet texture for Cr seed layers (I_{002}) with respect to the substrate temperature (T_{sub}).

多結晶 MgO 下地層による FePt-C の微細構造制御

城山泰祐、Varaprasad, B. S. D. Ch. S.、高橋有紀子、宝野和博 (物質・材料研究機構)

Microstructure control of FePt-C by poly crystalline MgO underlayer T. Shiroyama, B. Varaprasad, Y.K. Takahashi and K. Hono (National Institute for Materials Science)

<u>はじめに</u>

次世代超高密度磁気記録方式として提案されている熱アシスト方式用記録媒体として、MgO 下地上に L10 規則構造をもつ FePt-X ナノグラニュラー膜の研究が盛んに行われている。以前、我々はガラス基板に成膜し た多結晶 MgO 下地上に成膜した FePt-C 層が、粒子サイズとサイズ分布が小さく、磁気特性に優れた良好な グラニュラー膜を形成することを報告した^{1,2)}。FePt-C 膜の粒子サイズは、成膜後のアニール温度¹⁾や C の体 積分率²⁾によって制御可能であるが、この系では膜厚が 6nm を超えると膜成長方向にも分離してしまい³⁾、 柱状成長が難しいという欠点がある。我々は、FePt-C 層厚 10nm 以上で、10nm 以下の FePt 粒子径とアスペ クト比 1.5 以上の柱状成長の両立を目指し、成膜条件の検討を行ってきた。今回、 MgO 下地の成膜条件が FePt-C の柱状成長に寄与することを新たに見出したので、その検討内容について報告する。

<u>実験方法</u>

製膜は超高真空マグネトロンスパッタ装置を用いて行った。まず、ガラス基板上に NiTa(100nm)を製膜し、 続いて、MgO(10nm)を 5~39mTorr Ar ガス雰囲気化、室温にて製膜した。さらに、それらの MgO 下地上に FePt-C 膜を、3.6mTorr Ar ガス雰囲気下、基板温度 600℃、Fe、Pt、C の 3 元同時スパッタによって製膜した。 試料の構造は、X 線回折にて、平面及び断面構造形態は透過型高分解能電子顕微鏡により評価した。また、 磁気特性は超伝導量子干渉振動試料型磁力計にて行った。

<u>実験結果</u>

\boxtimes 1 \bowtie MgO(Ar 5mTorr)/FePt-C(12nm) (a) \succeq

MgO(Ar 39mTorr)/FePt-C(12nm)(b)の微細構造を 示す。FePt-C 層厚が 5nm 以下の場合は、MgO 成 膜時の Ar ガス圧による微細構造に差は見られな かったが、FePt-C 層厚が 12nm と厚くなると、MgO を 39mTorr と高圧下で成膜した場合に、柱状成長 し易いことが分かった。多結晶 MgO 膜の粒子サ イズを調査したところ、Ar 5mTorr では約 13nm、 Ar 39mTorr では約 10nm と大幅に小さくなってい ることが判明した。Ar 39mTorr 雰囲気化で成膜し た MgO 上では、MgO の粒界がより多く存在する ことで、FePt 粒子の面内方向への成長や粒子の合 体をより抑制しているものと考えている。

Fig.1 The in-plane and cross sectional TEM bright field image of FePt-C(12nm) on MgO deposited at Ar 5mTorr(a) and 39mTorr(b)

講演では、FePtのさらなる小粒径化検討や、垂直方向へのFePt粒子の配向性についても議論する。 参考文献

- 1) A. Perumal, L. Zhang, Y.K. Takahashi and K. Hono, J. Appl. Phys. 108, 083907 (2010).
- 2) A. Perumal, Y.K. Takahashi and K. Hono, J. Appl. Phys. 105, 07B732 (2009).
- 3) Varaprasad, B. S. D. Ch. S., Chen, M., Y.K. Takahashi and K. Hono, IEEE. Trans. Magn. 49, 718 (2012).

Effect of MgO seed layer misorientation on the texture and magnetic property of FePt-C granular film

J. Wang¹, S. Hata², B. S. D. Ch. S. Varaprasad¹, Y. K. Takahashi¹, T. Shiroyama¹ and K. Hono¹ ¹ National Institute for Materials Science, 1-2-1, Sengen, Tsukuba 305-0047, Japan ² Department of Electrical and Material Science, Kyushu University, Kasuga 816-8580, Japan

FePt-C based granular films with L1₀-ordered FePt nanoparticles have been considered as the most promising candidate for heat-assisted magnetic recording (HAMR) media for the recording density exceeding 1 Tbit/in². For the practical application of L1₀-FePt films as HAMR media, the thin-film structure has to be optimized with excellent alignment of the c-axis normal to the film plane and small grain size of less than 6 nm with less than 10% size distribution. In our previous work ¹), we demonstrated well-isolated uniform microstructure with high $\mu_0 H_c$ in FePt-C granular film on polycrystalline MgO underlayer. However, there are some remaining issues for the practical application, i.e. large switching field distribution and large in-plane hysteresis in the magnetization curve which could be an origin of poor SNR²). In this work, we investigated the origin of the large in-plane component in the magnetization curve by comparing the FePt-C granular films deposited on a MgO single-crystalline substrate and a poly-crystalline seed layer.

10 nm thick FePt-28vol.% C were deposited by co-sputtering Fe, Pt and C at 600°C under 0.48Pa Ar on MgO (100) substrate (Sample A) and glass/ NiTa(100nm)/ MgO(10nm) stacking (Sample B), respectively. MgO seed layer was RF sputter deposited on the amorphous NiTa layer under an Ar pressure of 5.2 Pa at room temperature (RT) using a MgO target. The orientation and phase mapping experiments were conducted on a FEI Tecnai F20 TEM with a field emission gun and an accelerating voltage of 200 kV using the ASTARTM (NanoMEGAS, Brussels, Belgium) system.

Figure 1 shows the in-plane and out-of-plane magnetization curves of Sample A and Sample B. $\mu_0 H_c$ of Sample A and Sample B are 4.3 and 3.7 T, respectively. Although both of the films show strong perpendicular anisotropy, compared with Sample A, Sample B presents a loop with smaller coercivity, broaden of switching field distribution and in-plane minor loop. By comparison of the orientation maps in Fig.2, one can see that the MgO seed layer introduces significant misorientation of the (001) texture along the normal direction and it should mainly responsible to the decay of magnetic properties in Sample B. With further ASTAR analysis, we found that about 23% of FePt grains in Sample B have 45° or even 90° miorientation from the [001] direction. They are mainly originate from misorientated MgO seed layer grains, MgO surface roughness and MgO grain boundaries which were confirmed by cross-sectional HRTEM observation. **Reference**

1) A. Perumal, Y. K. Takahashi, and K. Hono, Appl. Phys. Express 1, (2008) 101301.

2) L. Zhang Y.K. Takahashi, A. Perumal, and K. Hono, J. Mag. Mag. Mater, 322 (2010) 2658.

Fig.1 In-plane and out-of-plane magnetization curves of (a) Sample A and (b) Sample B.

Fig.2 In plane orientation mapping (a, c and e) and virtual bright field TEM images (b, d and f) of Sample A (a & b); polycrystalline MgO (c & d) and Sample B (e & f).

Mechanism of coercivity enhancement by Ag addition in FePt-C granular

media for heat assisted magnetic recording

B. Varaprasad¹, Y.K. Takahashi¹, J. Wang¹, T. Ina², T. Nakamura², W. Ueno²,

K. Nitta², T. Uruga², and K. Hono¹

¹National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047, JAPAN

²Japan Synchrotron Radiation Research Institute (JASRI/SPring-8), 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan

FePt granular thin films are considered to be one of the suitable candidates for ultrahigh density perpendicular recording media beyond 1 Tbits/in² because of the high magnetocrystalline anisotropy of the $L1_0$ -FePt phase (~7×10⁷ erg/cc). We previously reported highly L1₀-ordered FePtAg–C nanogranular film as a potential high-density storage medium for heat assisted magnetic recording (HAMR) [1,2]. Although the addition of Ag is known to increase the H_c, the mechanism of H_c enhancement is not clarified yet. In this paper we investigated the Ag distribution in FePtAg-C granular films by aberration-corrected scanning transmission electron microscope-energy dispersive X-ray spectroscopy (STEM-EDS) and X-ray absorption fine structure (XAFS).

(FePt)_{0.9}Ag_{0.1}-28vol%C (FePtAg-C)and FePt-28vol%C (FePt-C) granular films were deposited by co-sputtering Fe, Pt, Ag and C targets on a pre-deposited glass/a-NiTa/MgO substrates at 600°C. In this work, we employed a new alternating layer deposition technique to control the grain growth in the perpendicular direction suppressing the growth of the randomly oriented spherical particles on the [001] textured FePt granular layer. The film stack was glass/a-NiTa(60nm)/MgO(15nm)/[(FePt)_{0.9}Ag_{0.1}-48vol%C or FePt- 48vol%C(0.25)/FePt(0.15)]₂₅ deposited on a heat resistant glass substrate [3]. Figure 1 shows the in-plane and out-of-plane magnetization curves of (a) FePt-C and (b) FePtAg-C films. Both of the films show strong perpendicular anisotropy due to the strong c-axis texture. Coercivity H_c of FePt-C and FePtAg-C films are 3.0 and 3.9 T, respectively. TEM bright-field images (not shown here) indicated that FePt-C and FePtAg-C show well-isolated uniform microstructure with average particle sizes are 10.5 nm and 10.0 nm, respectively. The higher H_c in the FePtAg-C film in spite of the similar microstructure is attributed to the higher degree of $L1_0$ ordering. Figure 2 shows STEM-EDS elemental maps of (a) Fe, (b) Pt, (c) Ag and (d) a combined map of Fe and Ag in the FePtAg-C film. The elemental mapping shows that FePt particles are enveloped by Ag-rich shells. EXAFS results showed that Ag shells have fcc-like structure. From these details analysis, we can conclude that Ag is rejected from the core of FePt grains during the deposition, forming Ag-enriched shell surrounding L10-ordered FePt grains. Since Ag has no solubility in both Fe and Pt, the rejection of Ag induces atomic diffusions thereby enhancing the kinetics of the $L1_0$ -order in the FePt grains [3].

Reference

[1] L. Zhang, Y.K. Takahashi, K. Hono, B.C. Stipe, J.-Y. Juang, M. Grobis, JA P. 109, 07B703 (2011)

[2] L. Zhang, Y. K. Takahashi, K. Hono, B. C. Stipe, J. Y. Juang, M.Grobis, IEEE Trans. Magn. 47, 4062 (2011).

[3] B. Varaprasad, Y.K. Takahashi, J. Wang, T. Ina, T. Nakamura, W. Ueno, K. Nitta, T. Uruga, K. Hono, APL 104, 222403 (2014)

Figure 1. In-plane and out-of-plane magnetization curves of (a) FePt-C and (b) FePtAg-C granular films.

Figure 2. EDS mappings of (a) Fe, (b) Pt, (c) Ag and (d) Fe and Ag of FePtAg-C granular film.

ナノシリカ粒子をマスクとしたドライエッチング手法による

垂直磁化 FePt ナノドット形成の検討

飯田勝敬¹、月岡純¹、塚本新²、伊藤彰義² (¹日本大学大学院理工学研究科、²日本大学理工学部)

Fabrication of perpendicular magnetized FePt nano-dot by dry etching with nano-silica particle mask.

K. Iida¹, J. Tsukioka¹, A.Tsukamoto², and A.Itoh.²

(¹Graduate School of Nihon Univ, ²College of Science and Technology, Nihon Univ.)

はじめに 我々は超高密度記録媒体用孤立ナノ磁性体形成を目的としており、均質な連続膜状磁性体をエッ チング加工することによる形成手法につき検討している。これまで、平均粒径 18 nm のシリカ粒子を用いて 熱酸化 Si 基板上へ単層の自己集積化ナノシリカ粒子層 (Self-Assembled Silica nano Particles layer : SASP) を形 成、エッチングマスクとして用いることで SASP のナノ凹凸構造を転写した基板形成が可能であることを報 告している¹⁾。本報告では本手法を FePt 連続膜に応用することで孤立したナノ磁性ドット形成について検討。 また、エッチング加工後の FePt 連続膜の磁気特性評価を行った。

実験方法 エッチング対象である FePt 連続膜は DC マグネトロンス パッタ法を用い FePt 多層膜を製膜後、赤外線ランプ真空炉により熱 処理することで総膜厚 15 nm の (001) 優先配向した $L1_0$ -FePt 連続膜 を作製した。多層膜構成として[Fe_{30.5} Pt_{69.5} (1.9 nm) / Fe (0.6 nm)]₆/ Sub²⁾、熱処理条件は平均昇温速度 100 ℃ / h、到達温度 400 ℃であ る。連続膜上に平均粒径 7 nm のシリカ粒子を用いディップコート 後に膜面垂直入射の Ar⁺ドライエッチングを行うことで、シリカ粒 子をエッチングマスクとし孤立した FePt ナノドットの形成を図る。

実験結果 FePt 連続膜の表面形状を原子間力顕微鏡 (AFM) にて評 価した結果を Fig.1 に示す。中心線平均粗さ Raが 0.28 nm の平坦性 を有する。完全に孤立し AFM による評価が行えるよう、FePt 連続 膜上でシリカ粒子が希薄となる条件にて形成した試料及びエッチ ング加工を施した結果を走査型電子顕微鏡(SEM)により観察した (Fig.2)。本試料は表面に占めるシリカ粒子の割合が約4.8%とわず かであるため、エッチング加工した際の磁化特性測定結果はほぼ FePt 連続膜のみがエッチングされた場合に近いと考えられる。Fig.3 は t_e (エッチング時間)がそれぞれ 0 s、10 s の試料を室温(300 K) にて超高感度磁化計測(SQUID-VSM)によるヒステリシスループ である。 $t_{\mu}=0$ sでは飽和磁化値が 12.6×10⁻⁵ emu となった。一方で $t_{s} = 10 \text{ s}$ では 6.2×10⁻⁵ emu であり、 $t_{s} = 0 \text{ s}$ に比べおよそ半分になっ ている。このことから FePt 連続膜が総膜厚の半分である 7.5 nm と なるまでエッチングが進行したと考えられる。あわせて、磁気体積 を半分にまで減少しても保磁力 H_cは約1T から 0.8T と同程度であ ることから本 FePt 連続膜がエッチング手法によるナノドット形成 に利用可能な均質な特性を持つことを示した。また、Fig.2(a) $t_e = 0$ s で見られていたシリカ粒子に相当するチャージアップを伴う明部 が Fig.2(b) t_e=10 s では見られず、エッチングの進行によりシリカ粒 子が消失したものと考えられる。そこで、マスク部の残留高さを評 価するため $t_s = 10$ s の試料を AFM にて観察した (Fig.4)。SEM では 観察されなかったナノ凹凸が観察でき、それらの平均高低差は約 3.65 nm であった。以上より平均粒径 7 nm のシリカ粒子が局所的エ ッチングマスクとして機能し、ドライエッチング手法による FePt ナノドット形成の可能性を示した。

Ra = 0.28 nm

Fig.1 AFM crosses section profile of FePt continuous film.

Fig.2 SEM images of silica particle on FePt continuous film. (a) $t_e = 0$ sec, (b) $t_e = 10$ sec

Fig.4 AFM crosses section profile of silica particle on FePt continuous film ($t_e = 10$ s).

謝辞 本研究の一部は情報ストレージ研究推進機構及び文部科学

<u>参考文献</u>

- 1) A. Itoh, J. Yeh, and A. Tsukamoto, 55th Annual Conference on Magnetism & Magnetic Materials, CF 13 pp. 188 189 (2010).
- 2) X J Mo, H Xiang, W Lu, Y P Zheng, G Q Li, H Saito, S Ishio, D M Jiang, X W Tan and Y Q Lin, *Journal of Physics:* Conference Series, 266, 012040 (2011).

追加熱処理による L10-FeCuPt 孤立微粒子の磁気特性向上の評価

月岡純1,塚本新2,伊藤彰義2

(1日本大学大学院理工学研究科,2日本大学理工学部)

Improvement of Magnetic Properties of L_{10} -FeCuPt Isolated Grain by Additional Annealing

Jun Tsukioka¹, Arata Tsukamoto², Akiyoshi Itoh²

(¹Graduate School of Nihon Univ., ²College of Science and Technology, Nihon Univ.)

1.はじめに 超高密度磁気記録媒体作製を研究目的とし、Fe/Cu/Pt 多層薄膜を急速昇温熱処理(Rapid Thermal Annealing: RTA) する事で、孤立微粒子化、L10規則合金化、(001) 優先配向化が可能である事¹⁾、また RTA に 加え、粒子同士の結合を抑制する急速冷却処理(Rapid cooling process: RCP. 以下、急速昇降温熱処理)による L10-FeCuPt 孤立粒子の作製と追加熱処理による孤立微粒子単結晶化について報告している²⁾。本報告では上 記一連のプロセスに対し磁気特性評価を行い、特に追加熱処理過程での粒子内構造単結晶化による磁気特性 の向上について検討を行った。

2.実験方法 DC マグネトロンスパッタ法により熱酸化 Si 基板上に Fe/Cu/Pt の順に成膜した(積層膜厚 3.75 nm、組成比 Fe₄₃Cu₁₄Pt₄₃)。 成膜条件は到達真空度< 4.0×10⁻⁵ Pa、成膜中 ArH(H:3 vol%) 圧 1.8×10⁻¹ Pa である。成膜後、赤外線ランプ真空炉にて到達真空度< 8.0×10⁻⁴ Pa のもと急速昇降温熱処理を行った。昇温速度は赤外線ランプ電力で 制御し 150 ℃/sec とした。予め定めた最高温度に達した後、N2ガス をチャンバーへ導入し初期冷却速度≒-90 ℃/sec の急速冷却を行い、 次に単結晶化の為、真空中にて 600 ℃、1 hour の追加熱処理を行った。

3.結果 急速昇降温熱処理により作製した孤立微粒子 ならびに追加熱処理を施した孤立微粒子における TEM 像を Fig.1 に示す。ここで追加熱処理前後の詳細 な結晶構造評価より単結晶化が確認されている²⁾。 emu Fig.1(A)に示す追加熱処理前の孤立微粒子においては、 M a)領域の(001)優先配向 L10 相とともに、A1 相、そし ion て構造が明らかでない周辺金属領域が、追加熱処理に より(001)優先配向したL10単結晶体と(B)なった。

追加熱処理前後の各試料の磁化特性をFig.2に示す。 膜面垂直方向に磁場を引加した場合、追加熱処理前に おいては、0磁場近傍に観察される軟質磁性成分と±2 T以上で飽和する硬質磁性成分が存在し、保持力 Hc、

Fig.1 TEM image of single isolated grain. (A): RTA and RCP (pretreatment), (B): After additional annealing at 600 °C for 1 hour²).

残留磁化*M*s、飽和磁化*M*s、について、それぞれ *Hc*=1.1 Fig.2 Magnetization curves of FePt / FeCuPt grains, Additional T, Mr=275 emu/cc, Ms=465 emu/cc である。一方追加熱 annealing condition is 600 °C for 1 hour.

処理後では軟質磁性成分が消失し、Hc=2.6 T, Mr=903 emu/cc, Ms=915 emu/cc となり、追加熱処理前と比較し Hc、Msともに増加した。さらに膜面内方向に磁場を印加した場合の磁化特性では、±2T以下においてわず かに磁化ヒステリシスが見られるが±7Tでも飽和せず高い垂直磁気異方性の存在を示した。以上の結果より 追加熱処理を施こす事により高い垂直磁気異方性を有する Llo-FeCuPt 孤立微粒子が形成できた事を確認した。 さらに、同様のRTA、RCP プロセスにより作製した Fes6.2Pt43.8 孤立微粒子の磁気特性との比較から、Cu 添加 効果による Hc、Mの減少も見られた。

Ma

追加熱処理による磁気特性向上の要因として、結晶構造評価より確認されている微粒子周辺部に存在した A1 構造に相当する領域や異相に相当する結晶構造が、追加熱処理により (001)優先配向 L10結晶部を結晶成 長核とし単結晶化した為に磁気特性が向上したと考える。

4.謝辞 本研究の一部は、情報ストレージ研究推進機構及び文部科学省私立大学戦略的研究基盤形成支援事 業 (S1311020) の助成により行った。

5.参考文献

- Y. Itoh, T. Aoyagi, A. Tsukamoto, K. Nakagawa, A. Itoh and T. Katayama: Jpn. J. Appl. Phys., 43, 12, 8040(2004). 1)
- J. Tsukioka, T. Ubana, A. Tsukamoto, and A. Itoh: J. Magn. Soc. Jpn., 38, 143-146(2014). 2)
- T. Maeda, T. Kai, A. Kikitsu, T. Nagase and J. Akiyama: Appl. Phys. Lett., 80, 12, 2147(2002). 3)
- Dusti A. Gilbert, Liang-Wang, Timothy J. Klemmer, Jan-Ulrich Thiele: Appl. Phys. Lett., 102,132406 (2013). 4)

急速昇降温熱処理形成 FeCuPt 孤立微粒子の

多段階粒子形成による表面被覆率・粒子数密度増大の検討

小笠原亜紀¹,月岡純¹,加藤真実²,塚本新²

(1日本大学大学院理工学研究科,2日本大学理工学部)

Increase of Surface Coverage and Areal Density of Isolated FeCuPt Grain

by Multistep particle formation with Rapid thermal Annealing and Rapid Cooling process

Aki Ogasawara¹, Jun Tsukioka¹, Makoto Kato² and Arata Tsukamoto²

(¹Graduate School of Nihon Univ. ²College of Science and Technology, Nihon Univ.)

<u>はじめに</u>

超高密度磁気記録媒体の作製を目指しており、これまで平坦な熱酸化 Si 基板上に FeCuPt 多層膜成膜後、急速昇温熱処理(RTA: Rapid Thermal Annealing)および急速冷却処理(RCP: Rapid Thermal Annealing)を行うことで膜面に対しc軸が垂直配向した *L*1₀-FeCuPt 孤立微粒子が形成可能であることを報告している^{1),2)}.しかしながら膜表面に占める磁性体領域の表面被覆率が20%と疎であることが課題であったため、本報告では粒子形成時の初期積層厚、粒子形成手順の変更による表面被覆率、粒子数密度増大の検討を行った.

<u>実験方法</u>

DC マグネトロンスパッタ法により熱酸化 Si 基板上に sub/Fe/Cu/Pt の順に組成比 Fe₄₃Cu₁₄Pt₄₃の多層膜を初 期積層厚 t_s (1.25 nm, 2.5 nm, 3.75 nm)で成膜した. 成膜後, 赤外線ランプ真空炉にて急速昇降温熱処理を行っ た. 熱処理方法は赤外線ランプの電力制御により室温から 2.9~5.3 s で到達温度 460~600 ℃に達し, 目標温 度到達後, 窒素投入により初期冷却速度 -33~-68 ℃/s で急速冷却を行った. 成膜・熱処理後, 同一基板上に て成膜, 熱処理プロセスを繰り返し粒子形成する多段階粒子形成を行った.

<u>結果</u>

TABLE. I に各種成膜, 熱処理プロセスで作製した 粒子形態,磁気特性,結晶構造を示す.Fig.1 に各作製 試料の膜面垂直方向の M-H 特性を示す. t=3.75 nm に ついては単結晶化のため 600 ℃、1 h の追加熱処理を 行った. Fig.1 (a) から膜面に対し垂直磁気異方性を 有する Hc=2.6 T の磁性粒子が得られることが確認で きる. 一方, 平均粒径の減少, 粒子数密度増大が課題 であり, t_sを減少し改善を目指した. t_s=2.5 nm にする ことで粒子微細化、粒子数密度増大が達成でき、さ らに追加熱処理なしで ts=3.75 nm 時と同等の磁気特 性を示した. しかし上記(a), (b)ではいずれも表面被 覆率が20%付近と低い値を示したため多段階粒子形 成による改善を試みた.改善方法として、まず粒子 の高密度化のためさらに t, を減少し t,=1.25 nm にて 粒子を形成し高密度微粒子核形成を行う. その後磁 気体積増大のため成膜,熱処理プロセスを繰り返し, 核成長により高粒子数密度を保ちつつ表面被覆率が 40%を超える粒子が形成可能となった.

TABLE. I summary of particle form, crystal structure and magnetic characteristic on various way of deposition (a)formed particle with additional anneling(t_s =3.75) (b) formed particle(t_s =2.5) (c) first time to formed particle (t_s =1.25) (d) second time to formed particle(t_s =1.25)

		(a)	(b)	(c)	(d)
particle shape	average grain diameter [nm]	53.4	21.5	7.79	10.4
	particle number density [T particle/inch ²]	0.07	0.35	3.4	3.2
	surface coverage [%]	23	20	25	43
crystal structure	L 1o-FeCuPt(001), (002) diffraction peak	0	0	-	-
magnetic structure	coercive force Hc [T]	2.6	3.1	-	1.5
	saturation magnetization Ms [emu/cc]	915	740	ł	260

Fig.1 M-H loops comparing the magnetic property on various way of deposition

謝辞

本研究の一部は情報ストレージ研究推進機構,文部科学省私立大学戦略的研究基盤支援事業(S0311020)の 助成により行ったものである。

<u>参考文献</u>

- 1) Y. Itoh, T. Aoyagi, A. Tsukamoto, K. Nakagawa, A. Itoh and T. Katayama: Jpn. J. Appl. Phys., 43, 12, 8040(2004).
- 2) A. Itoh, A. Tsukamoto, S. Okame and K. Mizusawa: J. Magn. Soc. Jpn., 36, 62-65(2012).

室温作製原子層積層スパッタ堆積 Co/Pt 膜の磁気特性

本多 直樹, 土屋垂穂, 内田裕久

(東北工大)

Magnetic properties of atomic layer stacking Co/Pt films sputter deposited at room temperature

N. Honda, T. Tsuchiya, H. Uchida

(Tohoku Inst. Tech.)

<u>はじめに</u>

次世代高密度記録媒体には $1 \times 10^7 \text{ erg/cm}^3$ 以上の大きな磁気 異方性と 800 emu/cm³ 程度以上の高飽和磁化 M_s を持つことも 必要である. L1₁ CoPt 規則化合金はこれらの条件を満たす. しかし,高磁気異方性を得るためには,250 ℃以上での作製 が必要である¹⁾. 我々はコリメータを用いた Co/Pt 膜の原子層 積層スパッタ堆積により,室温作製で高 M_s ,高異方性磁界 H_k ($M_s = 870 \text{ emu/cm}^3$, $H_k = 15 \text{ kOe}$)の垂直異方性膜を得た²⁾. ここ では,原子層積層膜と単純な Co/Pt 積層膜との違いを調べた.

<u>積層膜の作製</u>

三元マグネトロンスパッタ装置を用いて試料膜を作製した. 直径 14 mm,高さ 10 mmの円筒型コリメータを用いた.スパ ッタ Ar 圧力はより大きな M_s が得られた 0.8 Pa とした.

150 ℃で加熱ガス出しを行った後,室温で製膜した. TaとPt をそれぞれ 10 nm ずつ形成した下地膜上に,基板ホルダーを 回転させて CoとPtの同時スパッタリングにより積層膜を作 製した. CoとPtの各層が基板 I 回転当たり必要な原子層分に なるようターゲット電力と回転速度を調整した.

<u>磁気特性</u>

Fig. 1 に Co と Pt を 1 原子層ずつ積層して作製した薄膜(膜厚 30 nm)の垂直および面内方向の M-H ループを示す. M_s は 1100 emu/cm³ と大きく,また,面内方向ループの飽和磁界から見積 もられる垂直 H_k も反磁界を含んで 8 kOe と大きな値が得られ た. Fig. 2 は Co と Pt をそれぞれ 3 原子層ずつ積層した膜の M-H ループを示す. H_k は 5 kOe 程度の垂直異方性膜であるが, M_s は大きく低下し,ほぼ Co の単純希釈値である³⁾. Fig. 3 は さらに, Co と Pt を 1:3 の原子層比とした場合の試料の M-H ループを示す. H_k も小さくなっているが, M_s はやはり単純希 釈程度に低下している.したがって,原子積層膜では大きな $M_s と H_k$ が同時に得られていることより,L1₁の規則化が明瞭 には見られない²⁾ものの,規則合金的な磁気特性となっている といえる.

Fig. 1 Perpendicular and in-plane M-H loops for a Co/Pt stacked film deposited with 1/1 atomic layer using a collimator.

Fig. 2 Perpendicular and in-plane M-H loops for a Co/Pt stacked film deposited with 3/3 atomic layers.

Fig. 3 Perpendicular and in-plane M-H loops for a Co/Pt stacked film deposited with 1/3 atomic layers.

<u>参考文献</u>

H. Sato, T. Shimatsu, Y. Okazaki, H. Muraoka, H. Aoi, S. Okamoto, and O. Kitakami, J. Appl. Phys., vol. 103, pp. 07E114-07E114-3, 2008. 2) T. Tsuchiya, N. Honda, S. Saito, H. Uchida, and K. Yamakawa, Intermag 2014 Digest Book, ES-14, pp. 1937-1938, Dresden, 2014. To appear in IEEE Trans. Magn. 3) Z. Zhang, P. E. Wigen, S. S. P. Parkin, J. Appl. Phys., vol. 69, p. 5649, 1991.

CoPt-WO3 グラニュラ媒体の磁気特性及び微細組織へのポストアニールの効果

[○]タム キム コング^{a)}, 日向 慎太朗^{b,c)}, 斉藤 伸^{b)}, 高橋 研^{b)} (^{a)}田中貴金属工業株式会社, ^{b)}東北大学, ^{c)}日本学術振興会特別研究員)

Post-annealing effect on magnetic properties and microstructures of CoPt-WO₃ granular media

^OKim Kong Tham ^{a)}, Shintaro Hinata ^{b, c)}, Shin Saito ^{b)}, and Migaku Takahashi ^{b)}

(^{a)}TANAKA KIKINZOKU KOGYO K. K., ^{b)}Tohoku University, ^{c)} JSPS research fellow)

はじめに 近年、マイクロ波アシスト磁気記録 (MAMR)¹⁾ はハードディスクが直面している trilemma 課題を 打破する将来技術として注目されている。第一世代の MAMR 媒体には、現行グラニュラ媒体に用いられてい る CoPt 合金を高 Ku化して用いることが提案されている²⁾。一般に CoPt 合金の高 Ku化手法の一つとして、成 膜中に Co と Pt の原子拡散を促進させる基板加熱成膜プロセスが知られている³⁾。しかしながら、このプロ セスをグラニュラ媒体作製の際に適用すると、下地層の表面凹凸が平坦化する結果、層状析出組織上に球状 のグラニュラ組織が形成されてしまい、コラム状組織が得られないことがわかった⁴⁾。そこで我々は、室温 で成膜されたグラニュラ媒体のコラム状構造を維持しながら磁性結晶粒中の原子拡散を促進させる方法とし て、ポストアニール法に注目した。今回我々は、ポストアニールの効果が室温成膜後のグラニュラ組織に依 存すると考え、様々な酸化物材料の CoPt-酸化物グラニュラ媒体をポストアニールし、その磁気特性及び微 細組織を評価したので報告する。

実験結果 一例として Fig. 1 には、ポストアニール温度(T_a): 500℃及び室温の CoPt-WO₃ グラニュラ媒体の 磁化曲線を示している。挿入図は各媒体の平面 TEM 像である。媒体の層構成は、Glass sub./ Ta (5 nm)/ Pt (6 nm)/ Ru (0.6 Pa, 10 nm)/ Ru (8 Pa, 10 nm)/ Co₆₀Cr₄₀ - 26 vol. % SiO₂ (2 nm)/ Co₈₀Pt₂₀-30 vol. % (Al₂O₃, SiO₂, TiO₂, WO₃) (8 Pa, 16 nm) とした。熱処理条件は到達真空度: 5×10⁴ Pa、昇温及び降温速度: 200℃/時間とした。Taを室温 から 500℃に昇温させると、保磁力 (H_c) は 7.1 から 10.8 kOe に増大した。この際に、粒間交換結合の強度に 関係する保磁力近傍の磁化勾配 4πldMldHlは 1.6 程度であり、この媒体の粒間交換結合が低いことを示唆して いる。Fig. 2(a) には、種々の酸化物 X (X: Al₂O₃, SiO₂, TiO₂, WO₃) を添加したターゲットを用いて作製した CoPt-X グラニュラ媒体の H_c の T_a 依存性を示している。X=Al₂O₃, SiO₂, TiO₂, WO₃ でのグラニュラ媒体の最大 H_cはそれぞれ 2.3, 5.7, 8.6, 10.8 kOe であった。今回検討した酸化物種の中では、WO3を用いた場合にH_cが最 も高い値を示した。T_aの変化に対するH_cの増大の原因を調べるために、WO₃を用いた媒体のK_u^{grain}を測定し た (Fig. 2(b))。ここでグラニュラ媒体中の磁性結晶粒の K_u^{grain} および M_s^{grain} は、媒体中に 30 vol. %の酸化物が 含まれているものとし、結晶粒の体積が媒体全体の 70%であるとして導出した。Taを室温から 500℃まで昇 温させると、 K_{u}^{grain} は 7.8×10⁶から 1.0×10⁷ erg/cm³まで増加した。更に T_{a} を上昇させると、 K_{n}^{grain} は 8.6×10⁶ erg/cm³に低下した。この Ku^{grain}の変化は H_cの変化にほぼ対応している。このグラニュラ媒体の熱揺らぎ耐性 の指標 vKugrain/kTを導出したところ約 200 であったことから、計測時間内での熱揺らぎによる影響は無視でき る。 $H_k^{\text{grain}} = 2K_u^{\text{grain}}/M_s^{\text{grain}}$ であり、 M_s^{grain} が T_a の変化に対して 990 emu/cm³のほぼ一定値であったことを考え併 せると、H_cの増大はH_k^{grain}の増大に起因することが示唆される。以上の結果を総括すると、CoPt-WO₃グラ ニュラ媒体に対するポストアニールは、結晶粒のコラム状構造を維持しながら粒内の原子拡散を促進し、10⁷ erg/cm³を超える高い K_{u}^{grain} を得るために有効な手法であるといえる。

登考文献 1) J. G. Zhu et al., *IEEE Tran. Magn.*, **44**, 125 (2008), 2) K. Yamada et al., digest of *The 24th Annual Magnetic Recording Conference*, E1 (2013), 3) e.g., Y. Yamada et al., *J. Appl. Phys.*, **85**, 5094 (1999), 4) Kim Kong Tham et al., *J. Appl. Phys.*, **115**, 17B752 (2014).

Fig.1 *M-H* loops of CoPt-WO₃ granular media at post annealing temperature (T_a) of 500 °C and room temperature. Insets show the in-plane TEM images for those granular media.

Fig.2 (a) H_c and (b) K_u^{grain} dependence of CoPt-X (X: Al₂O₃, SiO₂, TiO₂, WO₃) granular media on post annealing temperature (T_a).

周波数ドメインにおける磁化動特性測定用 Kerr 顕微鏡の開発

田丸慎吾、久保田均、薬師寺啓、福島章雄、湯浅新治 (産総研 ナノスピントロニクス研究センター)

Development of Kerr microscopy for the observation of magnetization dynamics in frequency domain

S. Tamaru, H. Kubota, K. Yakushiji, A. Fukushima, S. Yuasa

(AIST, Spintronics Research Center)

はじめに

微小な磁性体を用いた高周波デバイスの研究を行う上で、磁化の動的挙動を広帯域にわたって、高い空間分 解能で測定する事は極めて重要である。この目的には、これまで Micro Focus-Brillouin Light Scattering (MF-BLS)[1]や Time Resolved-Scanning Kerr Effect Microscopy (TR-SKEM)[2]が使われてきているが、MF-BLS は入射光の弾性散乱の為、GHz より低い周波数の測定が困難であり、また TR-SKEM は多くの振動モードを 一度に励起してしまうなど、それぞれ一長一短ある。我々は、広帯域、高空間分解能で磁化動特性を測定す るため、TR-SKEM を発展させ、単一周波数の連続マイクロ波で興味あるモードを選択的に励起し、それによ って生じたスピン波を Kerr 効果を用いて検出する、Spatially Resolved Ferromagnetic Resonance-Scanning Kerr Effect Microscopy (SRFMR-SKEM)という手法を開発した。[3,4]

実験方法及び結果

図1にSRFMR-SKEMのブロック図を示す。半導体レーザーは10 MHzの基準クロックに同期して波長408 nm、 半値幅約 20 ps のパルス光を発生する。またマイクロ波発振器も基準クロックに位相同期した 8 GHz のマイ クロ波を発生する。このマイクロ波に伴う高周波磁場が磁性膜に印加され、スピン波が励起される。パルス 光はマイクロ波の決まった位相タイミングで磁性膜を照射し、反射光はその時点における磁化を反映する Kerr 回転を示す。低周波パルスによってマイクロ波は 180 度位相変調され、パルス光の入射タイミングは周 期的に反位相に切り替えられる。よってフォトディテクタ出力を変調周波数に同期してロックイン増幅する 事により、高感度でスピン波の複素振幅が得られる。試料をスキャンしながらこの測定を繰り返す事により、 スピン波の空間分布を測定する事が出来る。

図 2(a)に試料の構造を示す。この試料では、100 nm 厚のパーマロイ(Py)膜が 100 µm 四方の正方形に微細加 工され、その下に平面導波路(CPW)が作りこまれている。この CPW にマイクロ波が流れ、Py 膜中にスピン Sig. Host 波が発生する。 Lock PC

図2(b)に520 Oeのバイアス磁場中で励起されたスピン波の振幅と位相の1次元 分布を示す。位相分布よりその波長は約15 μm である事がわかる。今回用いた Py 膜の幅は減衰定数よりも広いので、中心付近で励起されたスピン波が、両側 に伝搬しつつ指数関数的に減衰し、Py 膜の端に到達する頃にはかなり弱くなる。 その為 CPW 近傍では振幅が単調に減衰し、両端近傍でのみ進行波と反射波の干 渉が見えている。講演では、この測定手法の詳細及び、磁場や試料形状等を変 えた際の磁化動特性の測定結果について報告する。

参考文献

- A. A. Serga et al., Appl. Phys. Lett. 89, 063506 (2006) 1)
- W. K. Hiebert et al., Phys. Rev. Lett. 79, 1134 (1997) 2)
- S. Tamaru et al., J. Appl. Phys. 91, 8034 (2002) 3)
- S. Tamaru et al., Phys. Rev. B 70, 104416 (2004) 4)

謝辞

本研究は、JST 戦略的イノベーション創出推進プログラ ム(S-イノベ)「3次元磁気記録新ストレージアーキテク チャのための技術開発」の支援によって行われた。

-in

LD

RF

Gen

Sample 八

Ref.

Ret

10

MHz

LF

Gen.

垂直磁化L10-FePd 薄膜における低ダンピング定数

[○]飯浜賢志,水上成美*,永沼博,大兼幹彦,宮崎照宣*,安藤康夫
 (東北大学大学院工学研究科応用物理学専攻,*東北大学原子分子材料科学高等研究機構)
 Low magnetic damping in *L*1₀-FePd thin films with a large perpendicular magnetic anisotropy
 S. Iihama, S. Mizukami*, H. Naganuma, M. Oogane, T. Miyazaki*, and Y. Ando
 (Department of Applied Physics, Tohoku Univ., *WPI-AIMR, Tohoku Univ.)

<u>はじめに</u>

大きな垂直磁気異方性を有する合金薄膜は、磁気抵抗ランダムアクセスメモリの高い熱安定性を確保する ための磁性電極材料として重要である.他方、スピン注入磁化反転における反転電流密度は、垂直磁気異方 性定数(K_u^{eff})とギルバートダンピング定数(α)に比例する.よって、高い垂直磁気異方性を保ちつつ小さなαを 示す材料の探索が必須である.これまで我々は、垂直磁化 FePt 薄膜における磁化才差ダイナミクスの光学的 検出を行い、比較的大きなα値(0.06)を報告した¹⁾.PdはPtに比べて軽い元素であるため、FePdのαはFePt のそれに比べ小さな値を示すことが期待される.本研究では比較的大きな垂直磁気異方性と小さなαを兼備す ることが期待されるL1₀-FePd薄膜において磁化才差ダイナミクスを測定し,αを評価することを目的とした.

<u>実験方法</u>

試料は超高真空マグネトロンスパッタ法により作製した. 膜構成は SrTiO₃ (001)単結晶基板/FePd (20 nm)/Ta 保護層とした. 薄膜試料は、基板温度 T_sで成膜した後,温度 T_aで真空中熱処理した.磁気特性は振動試料

型磁力計(VSM),結晶構造をX線回折で評価し,磁化才差ダイナミ (; クスはフェムト秒パルスレーザーを用いた全光学的ポンプ・プロー ブ法により検出した.

<u>実験結果</u>

温度 T_s を様々に変えて作製したところ、 T_s が 300°C 以上の時に 垂直磁気異方性を有する試料が得られた.また T_a が 500°C 以上の 場合に表面平坦性が良く,かつ大きな垂直磁気異方性を示す試料が 得られた. Fig. 1(a)に T_s = 300°C および T_a = 500°C で作製した試料の 磁化ダイナミクス測定結果を示す.外部磁場は 20 kOe とし、磁場 角度 θ_H を様々に変えている.非常に周波数が速く減衰の小さい才 差運動が観測されている.それぞれの波形に減衰振動関数をフィッ ティングすることで才差周波数 f および緩和時間 τ を求め、それら から実効α値 α_{eff} を評価した.その際 α_{eff} = 1/2 $\pi f \tau$ の関係式を用いた。 Fig. 1(b)に異なる T_a で作製した試料の α_{eff} の磁場角度 θ_H 依存性を示 す. α_{eff} は θ_H に対して大きく変化している.これは異方性分散や2 マグノン散乱といった磁気的な不均一性の影響によるものと考え られる. T_a = 500°C の試料における α_{eff} の最小値は 0.006 であるた め、FePd 垂直磁化膜の α は 0.006 よりも小さい可能性がある。この 値は、垂直磁気異方性材料薄膜の中でも最も小さな値の一つである.

【謝辞】

本研究の一部は科研費(No. 24226001),田中貴金属, NEDO 若手研 究グラント(No. 11B07018d), FIRST プログラム, JSPS 特別研究員 奨励費(No. 26-4778)の援助のもと行われた.

参考文献

1) S.Iihama et al. Jpn. J. Appl. Phys. 52, 073002 (2013),

Fig. 1(a) Typical TRMOKE signals for the films with $T_{\rm s} = 300$ °C and $T_{\rm a}$ = 500 °C with different field angle $\theta_{\rm H}$ at fixed external field of 20 kOe. (b) $\theta_{\rm H}$ dependence of $\alpha_{\rm eff}$ obtained from the fitting with different $T_{\rm a}$.

CoPtCr-SiO2媒体の反転磁区形成時の実効ダンピング定数

○日向 慎太朗^{a,b)}, 斉藤 伸^{b)}, 高橋 研^{b)}, 佐橋 政司^{b)}
 (^{a)}日本学術振興会特別研究員 (PD), ^{b)}東北大学)

Effective damping factor for CoPtCr-SiO₂ medium with partially switched magnetic domains

^oShintaro Hinata^{a), b)}, Shin Saito^{b)}, Migaku Takahashi^{b)}, and Masashi Sahashi^{b)}

(^{a)}JSPS Research Fellow (PD), ^{b)}Tohoku University)

はじめに マイクロ波アシスト磁気記録 (Microwave Assisted Magnetic Recording: MAMR) は, trilemma 課題 打破に有用な技術として提案され,近年実際の媒体へのアシスト磁化反転結果が報告され始めた¹⁾.実用化 には第一世代として CoPt 基合金を用いたグラニュラ媒体の適用が検討されている²⁾. MAMR 媒体の材料開 発にあたっては,静的な磁気定数 (飽和磁化 M_{s} ,一軸結晶磁気異方性定数など)に加え,動的磁気定数,特 にマイクロ波の応答性に対応するダンピングファクター α の把握が重要である.一般にグラニュラ媒体中の 磁化が実効的に感じるダンピングファクター α_{eff} の評価は,磁化が膜面直方向に飽和した状態での強磁性共鳴 (Ferromagnetic Resonance: FMR)の線幅から評価される^{1,3-4)}.しかしながら,実媒体での記録時における磁化 状態では,上向きおよび下向きの磁化が膜中に混在しており,磁性結晶粒は逆向きの磁化から粒間交換結合 の影響を受けて歳差運動することとなるため, α_{eff} は磁化状態に依存して異なると考えられる.本研究では,

粒間交換結合を変化させた $Co_{84}Pt_{16}Cr_{10}-8mol(SiO_2)$ グラニュラ媒体について Q-band FMR を測定し、媒体の磁化状態と α_{eff} との相関について検討したので報告する.

実験結果 粒間交換結合の調整には、磁性層の成長初期部での結 晶粒同士の接触度合いを変化させた. その具体的な手法としては 下地層の成膜 Ar ガス圧 PAr & を変化させ, Ru 下地層の表面凹凸 を変化させた.図1に一例として表面凹凸の大きい $P_{Ar}^{Ru}=8$ Paの Ru下地上に作製したグラニュラ媒体における FMR 信号を種々の 磁化状態について示す.各信号の相対高さは媒体の磁化 M/M。に 対応しており,最上段および最下段の信号はそれぞれ磁化を上向 きおよび下向きに飽和させた状態での共鳴に対応している.また, 赤および青の実線で示された FMR はそれぞれ反転磁界 H_{sw}の大 きな上向きに磁化した結晶粒,および H_{sw}の小さな下向きに磁化 した結晶粒の FMR に対応している³⁻⁴⁾.上向き磁化の FMR に注 目すると、磁化飽和状態 (M/Ms=1) において、磁界約 2.4 kOe で 線幅 Δ H_{DC}^{res} が約 500 Oe の FMR が観測された.また,磁化反転 の進行とともに共鳴磁界は低減し、かつΔH_{DC}^{res}は増大していく ことがわかった.図2にはCoPtCr-SiO2グラニュラ媒体において (a) 上向きおよび (b) 下向きに磁化した結晶粒による FMR 線幅 $\Delta H_{\rm DC}^{\rm res}$ の磁化状態依存性を種々の $P_{\rm Ar}^{\rm Ru}$ 毎に示す. 副軸には $\alpha_{\rm eff}$ = ΔH_{DC}^{res}×γ/2ωにより導出した実効ダンピング定数を記載した.上 向き磁化起因の α_{eff} は $P_{Ar}^{Ru} = 0.6$ Paの試料では $M/M_s = 1$ から 0.65 への減少により 0.050 から 0.065 へとわずかな増大であった. 方、 $P_{Ar}^{Ru} = 8.0 Pa$ の試料では同様の M/M_s の変化で α_{eff} は約 0.025 から 0.115 へと大きく増大した. 下向きに磁化した結晶粒の共鳴 の挙動は、上記の上向きに磁化した結晶粒の共鳴と概ね同様で あった. P_{Ar}^{Ru}の大きな Ru 下地層を用いたグラニュラ媒体におい てα_{eff}の*M/M*_sに対する勾配が大幅に増大した理由としては, P_{Ar}^{Ru} の増大にともない組織の不均一性が増加し, 粒間交換結合の強度 に分散が生じたためと考えている.

参考文献 1) Y. Nozaki *et al.*, *J. Appl. Phys.*, **112**, 083912 (2012). 2) K. Yamada *et al.*, *Digest of the 24th Magn. Rec. Coference. TMRC*, **24**, 64 (2013).3) S. Hinata *et al.*, *J. Appl. Phys.*, **111**, 07B722 (2012). 4) S. Hinata *et al.*, *IEEE Trans. Magn.*, **48**, 3177 (2012)

Fig. 1 FMR linewidth for CoPtCr–SiO₂ granular media deposited on Ru underlayer with various Ar pressure P_{Ar}^{Ru} .

Fig. 2 FMR linewidths for (a) upwardly- and (b) downwardly magnetized grains for CoPtCr–SiO₂ granular media deposited on Ru underlayer with various Ar prewssure P_{Ar}^{Ru} .

CoPtCr-SiO2媒体の反転磁界分布に及ぼす マイクロ波アシスト磁化反転の効果

〇日向 慎太朗^{a,b)}, 斉藤 伸^{b)}, 高橋 研^{b)}, 佐橋 政司^{b)}
 (^{a)}日本学術振興会特別研究員 (PD), ^{b)}東北大学)

Effect of microwave assisted switching on switching field distribution of CoPtCr–SiO₂ medium ^OShintaro Hinata ^{a), b)}, Shin Saito^{b)}, Migaku Takahashi^{b)}, and Masashi Sahashi^{b)}

(^{a)}JSPS Research Fellow (PD), ^{b)}Tohoku University)

はじめに マイクロ波アシスト磁気記録 (Microwave Assisted Magnetic Recording: MAMR) は, trilemma 課題 打破に有効であり,現行の CoPtCr 合金を用いたグラニュラ媒体に適用することで更なる記録密度向上が期待 されている¹⁾. 実際に MAMR が行われる際には,媒体は書込ヘッドからの記録磁界を斜め方向に受けて反転 する¹⁾. しかしながら一般にマイクロ波アシスト磁化反転の原理検証は,直流磁界を試料垂直方向に印加し た状況でマイクロストリップ線路を用いた周波数掃引型の測定系を用いて行われている²⁻³⁾. 今回我々は,直 流磁界の印加角度を試料の回転により容易に変更可能であり,かつ数 mm の領域に渡って強度が均一なマイ クロ波を試料へ入射できる「キャビティ法」⁴⁾によりマイクロ波アシスト磁化反転を試み,その反転磁界分 布を評価したので報告する.

実験結果 図1にアシスト反転と反転磁化量検出のためのマ イクロ波の印加手順を示す.細い実線は外部磁界 H_{Dc}^{ext} を薄 膜面直方向に印加した際のフルループを示している.実験手 順は以下の通りである.I)磁化を飽和させるため,外部磁界 H_{Dc}^{ext} を膜面直方向へA(最大磁界)まで印加.II) H_{Dc}^{ext} をA からB($H_{Dc}^{ext}=0$)まで掃引する.III) H_{Dc}^{ext} の印加角度を変 更した後,アシスト反転を促すためにQ-band(約34 GHz)の マイクロ波を印加しながら H_{Dc}^{ext} の印加角度を膜面直へ戻 し,DからEへと磁化状態を維持したまま H_{Dc}^{ext} を掃引する. V) H_{Dc}^{ext} をEからAまで掃引しマイナーループを閉じる.VI) H_{ret} の値を変更し上記I) – V)を繰り返す.反転磁化量は,D からEへと磁界掃引中に弱振幅にてQ-band強磁性共鳴を測 定し,その共鳴磁界から見積もった⁵.

図 2 には種々のマイクロ波強度 P において評価した H_{DC}^{ext} 印加角度 (a) 0 deg (膜面直) および (b) 45 deg における $Co_{74}Pt_{16}Cr_{10}$ -8mol(SiO₂) グラニュラ媒体の反転磁界分布 (Switching field distribution: SFD) を示す. 各 SFD は積分面積 が 100%となるように規格化されている. (a) において P =0.002 mW (ほぼアシスト無し) では, SFD は約 3.8 kOe を最頻 値とした分布をとった. P を増加させるに従い, SFD の形状 全体が低磁界側へ移動した. P = 160 mW では 0.002 mW の場 合と比較して約 200 Oe 低磁界側へ移動しており,最頻値は 3.6 kOe となった. 一方, (b) において P = 0.002 mW での SFD は 2.5 kOe を最頻値とした分布をとった. P を増加させた場合, SFD の形状としては5 – 8 kOe 以上の反転磁界領域において形 状が約 200 Oe 低磁界側へ移動した. 上記の結果より, 斜め方 向の磁界印加においてもマイクロ波アシストによる反転磁界 の低減効果が認められることがわかった.

参考文献 1) K. Yamada et al., Digest of the 24th Magn. Rec. Coference. TMRC, 24, 64 (2013). 2) S. Okamoto et al., J. Appl. Phys., 109, 07B748 (2011). 3) Y. Nozaki et al., J. Appl. Phys., 112, 083912 (2012). 4) S. Hinata, et al., J. Magn. Soc. Jpn., 34, 214 (2010). 5) S. Hinata et al., IEEE Trans. Magn., 47, 3951 (2011).

Fig. 1 A schematic of verification method for microwave assisted effect. Grey solid line shows the typical full–loop of the granular media (θ_H =0deg).

Fig. 2 Switching field distribution at various microwave assisting power for incident angle of DC external field θ_H is (a) 0 deg and (b) 45 deg.

熱アシスト磁気記録における媒体の磁気異方性

赤尾達也, 礒脇洋介, 小林正, 藤原裕司 (三重大) Anisotropy constant required for Thermally Assisted Magnetic Recording T. Akao, Y. Isowaki, T. Kobayashi, Y. Fujiwara (Mie Univ.)

<u>はじめに</u>

熱アシスト磁気記録(TAMR)において必要な媒体の磁気異方性 K_u を考える。まず、熱伝導シミュレーションにより書き込み直後の媒体の冷却速度 $\partial T/\partial x$ を計算した。次に、情報安定性に注目して分子場近似シミュレーションにより必要な K_u を算出した。TAMR では K_u とともにキュリー温度 T_c も指定する必要があるが、 K_u は T_c の関数である。そこで、バルクの K_u に対する膜の K_u の比 K_u/K_{ubulk} というパラメーターを導入する。 K_u/K_{ubulk} が同じであれば K_u が異なっていても膜の作製難易度は同じであるが、 K_u/K_{ubulk} を大きくするのは難しい。

<u>計算結果</u>

計算パラメーターは、媒体の膜厚 h、1 ビットあたりのグレイン数 n、グレインサイズの標準偏差 σ D、 書き込み温度 T_w で、Table 1 には hを変化させた結果を示す。媒体を TAMR として使うためには、以下の 3 つの条件を満たす必要がある。(1) 情報の 10 年間保存に必要な媒体の熱揺らぎ指標 K_uV/kT (330K) は、n と σ Dから決まる熱揺らぎ指標 VK_β より大きくなくてはならない。(2)記録時において、記録位置の 1 ビット 前、1 トラック隣の情報安定性から、媒体が要求する最低の冷却速度 $\Delta T/\Delta x$ が決まる。これは $\partial T/\partial x$ よ り低くなくてはならない。なお、熱伝導シミュレーションにより計算した媒体の冷却速度はダウントラック 方向とクロストラック方向でおおよそ等しい。そして、ビットアスペクトレシオを最適化することで、媒体 が要求する冷却速度も各方向で等しくすることができるので、ダウントラック方向でのみ考える。(3)主磁極 下の情報安定性より、主磁極下で媒体が情報を保持できる最大の磁界 H_{adj} が決まる。これは必要な記録磁界 H_w より高くなくてはならない。この計算条件では(2)が律速となっていて、これより最低の K_u/K_{ubulk} が決ま

る。hが 6 nm から 10 nm に厚くなると、グレイン 体積 Vも同様に大きくなるが、 K_u/K_{ubulk} はそれほど 小さくはならない。これは hの増加とともに $\partial T/\partial x$ が下がるためである。h = 8 nm において $K_uV/kT =$ 63の媒体は情報を 10 年間保存できるが、TAMR と して使うには K_u が不十分であり、 $K_uV/kT = 97$ が必 要となる。もし $\partial T/\partial x$ を 6.9 K/nm から 13.5 K/nm まで上げることができれば $K_uV/kT = 65$ の媒体も TAMR として使うことができ、 K_u/K_{ubulk} を 0.87 か ら 0.55 まで下げることができる。したがって必要な K_u/K_{ubulk} は $\partial T/\partial x$ に大きく依存する。

本研究の一部は情報ストレージ研究推進機構(SRC)の助成のもとに行われました。ここに謝意を表します。

参考文献

 T. Kobayashi et al.: J. Magn. Soc. Jpn., 36, pp. 282-286, 2012.

Table 1 Media specification of TAMR for 4Tbpsi

<i>h</i> [nm]	6	8	10
<i>n</i> [grain/bit]	4	4	4
$\sigma_{ m D}[\%]$	10	10	10
<i>T</i> _w [K]	500	500	500
$M_{\rm s}$ (300K) [emu/cm ³]	675	655	643
$K_{\rm u}$ (300K) [Memu/cm ³]	27.8	25.2	23.9
$H_{\rm c}$ (300K)= $H_{\rm k}$ (300K) [kOe]	82.3	76.9	74.3
<i>T</i> _c [K]	544	532	524
$K_{\rm u}V/kT(300{\rm K})$	97	118	139
$K_{\beta} = f(n, \sigma_{D})$	63	63	63
(1) $K_{\rm u}V/kT(330{\rm K}) > K_{\beta}$	81	97	115
$\partial T / \partial x$ [K/nm]	7.72	6.92	6.23
(2) $\Delta T/\Delta x$ [K/nm] < $\partial T/\partial x$	7.72	6.92	6.23
$H_{\rm w}$ [kOe]	10.8	10.5	10.3
(3) H_{adj} [kOe] > H_w	24.5	27.2	29.8
$K_{\rm u}/K_{\rm ubulk}$	0.90	0.87	0.86