

Copyright ©2023 by the Magnetics Society of Japan. This article is licensed under the Creative Commons Attribution International License (CC BY 4.0) http://creativecommons.org/licenses/by/4.0/

T. Magn. Soc. Jpn. (Special Issues)., 8, 52-56 (2024)

<Paper>

RNAに基づく昇圧リアクトル機能を有するモータの 出力特性算定に関する検討

Calculation for Output Characteristic of Motor Structure with Boost Reactor Function Based on RNA

張磊・吉田征弘[†]・櫻井将・半田修士・田島克文 秋田大学理工学研究科,秋田県秋田市手形学園町1-1(〒010-8502)

L. Zhang[†], Y. Yoshida, S. Sakurai, N. Handa, and K. Tajima

Graduate School of Science and Engineering, Akita Univ., 1-1 Tegata Gakuen-machi, Akita, Akita 010-8502, Japan

In recent years, due to the demand for miniaturization and weight reduction of magnetic devices such as in-vehicle drive motors, the authors have focused on miniaturizing motor drive systems through the fusion of devices. In this paper, we propose an integrated motor structure combining a step-up reactor and a motor for a motor drive system using a step-up DC/DC converter. Comparing the integrated structure of the proposed step-up reactor and motor with a conventional motor by reluctance network analysis (RNA), we find that the proposed model can improve output in the high-speed range.

Key words: integrated structure of reactor and motor, permanent magnet motor, reluctance network analysis, nonlinear model, coupled analysis

1. はじめに

近年,地球温暖化が深刻化しつつあり,温室効果ガス排出量の 削減は極めて重要な課題となっている.国際エネルギー機関によ る世界の温室ガス排出のうち,運輸部門は世界の二酸化炭素排出 の24%を占めている¹⁾.自動車による二酸化炭素排出は運輸部門 の中で75%に上ることから¹⁾,自動車の低燃費化が求められてい る.それに応じて,各自動車メーカによる低燃費化に向けた開発 が進んでおり,ガソリンエンジンと電気モータで駆動するハイブ リッド電気自動車(HEV)やバッテリーと電気モータのみで駆動 する電気自動車(EV)などは市場規模が急拡大している.しかし バッテリーのエネルギー密度がガソリンより小さいため、ガソリ ン車と比べ,電気自動車の短い航続距離が課題となっている²⁾.

電気自動車における航続距離は、バッテリーに搭載するエネル ギー総量と走行中のエネルギー消費率であるモード電費によって 決まり、モード電費の向上には駆動システムの高効率化や車載部 品の軽量化が必要である.電気自動車の駆動システムは主にバッ テリー、コンバータ、インバータ、モータ、および減速機から構 成される. 2010年代初期に生産された電気自動車、例えば日産の リーフでは駆動システムが個別に構成されていたが、現在ではコ ンバータ、インバータ、モータ、減速機などをパッケージ化する 機電一体化が進んでいる³⁾.しかしながら、これまでの駆動システ ムの開発では、それぞれのユニットの最適化およびユニットレイ アウトの最適化は進められているものの、ユニット領域を横断し たデバイス融合によるシステムの小型化・軽量化は前例がない.

そこで本稿では,昇圧 DC/DC コンバータを用いたモータ駆動シ ステムにおける昇圧用リアクトルとモータを一体化した構造(以 下,磁気デバイス一体構造モータ)を提案し,駆動システムであ

Corresponding author: Y. Yoshida (e-mail: yoshida@gipc.akita-u.ac.jp).

るバッテリー,コンバータ,インバータ,モータの電気-磁気連 成解析による磁気デバイス一体構造モータの性能を検討する.駆 動システムを連成して解析するために,高速計算が可能で電気-磁気連成解析が容易である磁気抵抗回路網解析(Reluctance Network Analysis: RNA)に基づく特性算定モデルを作成し,同 体格の表面磁石型(Surface Permanent Magnet: SPM)モータ と基礎特性を比較し,評価したので報告する.

2. 磁気デバイス一体構造モータの特徴と動作原理

2.1 磁気デバイス一体構造モータの特徴

EV・HEV の駆動用モータは一般的に Fig. 1(a)に示すようなネ オジム焼結磁石を用いた永久磁石モータが採用されている.また, DC/DC コンバータに用いられるリアクトルもモータと同様に磁 気デバイスである. これら動力システムにおける磁気デバイスは, 従来システムではそれぞれのユニットに搭載されており、特に DC/DC コンバータユニット内に占める容積が大きいため、リアク トルの小型化は搭載容積の限られる自動車への貢献度が高い. 磁気デバイス一体構造モータは、モータの鉄心 (Fig.1(a)の固定 子バックヨーク部分)とリアクトル磁路を共有することで磁気デ バイスを融合するモータ構造である. Fig. 1(b)に,提案する一体構 造モータの構造を示す.鉄心に現在主流の電磁鋼板を用いたラジ アルギャップモータの固定子バックヨークを、磁気的等方性と高 い形状自由度を持つ圧粉鉄心を用いたボビン型リアクトルに置き 換えることで、磁気デバイス一体構造動力システムを実現し、 DC/DC コンバータユニットにおけるリアクトル容積をゼロにす ることが可能となる.

2.2 磁気デバイス一体構造モータの原理

Fig.2に、本稿で提案する磁気デバイス一体構造モータが動作しているときの磁束の流れを示す. モータの巻線電流 *Imotor* で発生する磁束*p*motor は径方向および周方向に流れるのに対し、リアク

トル電流 *I*reactor で発生する磁束 *p*reactor は径方向および軸方向で ある.このようにモータの固定子バックヨークと DC/DC コンバー タのリアクトル 2 種類の磁気デバイスの磁路を共有することで、 モータの低出力運転時 (リアクトル電流小) には通常運転ができ、 高出力運転時 (リアクトル電流大) にはモータバックヨークが磁 気飽和してモータ誘起電圧が低下するため、弱め界磁電流効果が 得られ、高速回転時において従来モータより高いトルク出力が期 待できる.

(b) Magnetic Device Integral Structure Motor. **Fig. 1** Comparison of conventional and proposed motor.

3. RNA モデルの導出と妥当性検証

3.1 SPM モータの RNA モデルの導出

Fig. 3 に、検討に用いた SPM モータ (以下,ベースモデル)の 形状と諸元を示す.モータの直径は 215 mm,固定子バックヨー クの厚みは 15.5 mm,回転子直径は 140.4 mm,ギャップ長は 0.7 mm,固定子及び回転子の積厚は 60 mm,コイルエンド込みの軸 長は 108 mm である.巻線は分布巻で、磁極ピッチが 6,コイル ピッチが 5 の短節巻であり、1 スロットあたりに 6 ターン巻かれ ている.回転子磁石は、残留磁束密度 1.2 T,保磁力 909 kA/mの ネオジム焼結磁石であり、極数は 8 極である.また、固定子と回 転子のコア材料は電磁鋼板 35JN210 である.

Fig. 3 Structure of base model.

文献(4)と(5)において RNA に基づく SPM モータのモデリング 手法が提案されており、その分割方法を基本とし、以下では本モ ータの RNA モデルの導出方法について述べる.まず、本モデルの 固定子ティース数は48 であるため、モデルを周方向に48分割し、 Fig. 4に示すように、1ティースあたりを固定子ヨーク、ティース、 コイル、空気、磁石および回転子ヨークに分割し、各部分のパラ メータから算出した磁気抵抗に置き換え、周方向に展開してモー タの RNA モデルを構築する. Fig. 4 における起磁力は固定子巻線 による起磁力 F_u , F_v , F_w と磁石による起磁力 F_m に分けられる. Table 1 に各シンボルの意味を示す. Fig. 5 に導出された RNA モ デルの一部を示す.

Fig. 4 Image of magnetic circuit per tooth of base model.

Table 1 Symbol description for Fig.4.			
Symbol	Symbol description		
R _{sby}	Reluctance of stator yoke		
R_t	Reluctance of teeth		
F_u	Magnetomotive force of U-phase winding		
F_{v}	Magnetomotive force of V-phase winding		
F_{w}	Magnetomotive force of W-phase winding		
R_g	Reluctance of gap		
R_m	Reluctance of magnet		
F_m	Magnetomotive force of magnet		
R_r	Reluctance of rotor core		
R_{rby}	Reluctance of rotor yoke		

Fig. 5 RNA model of base model (1/4).

3.2 磁気デバイス一体構造モータの RNA モデルの導出

Fig. 6(a)に本稿で提案する磁気デバイス一体構造モータを示す. ベースモデルと比較するため,提案モデルの基本的な諸元は Fig. 3 に示したベースモデルと等しい.ただし,ベースモデルの固定子 バックヨークを同図(b)に示すように圧粉磁心を用いたボビン型リ アクトルに置き換えている.前章で述べたように,モータの固定 子バックヨークと DC/DC コンバータのリアクトルの2 種類の磁 気デバイスの磁路を共有するため,定格運転時にモータとリアク トルの共有磁路で磁気飽和が発生しかねない.そのため,提案し た磁気デバイス一体構造モータではコイルエンド部までヨークの 軸方向端部を伸ばすことで、リアクトル鉄心の磁気飽和を緩和し

(a) Dimensions of magnetic device integrated structure motor.

(b) Dimensions of bobbin type reactor.Fig. 6 Structure of proposed model.

た.

前節で述べた SPM モータの RNA モデルを基本とし, 提案した 磁気デバイス一体構造モータは同じく周方向に 48 分割した. 軸方 向の分割を Fig. 7 に示す. リアクトルの部分は軸方向に 4 分割, 径方向 2 分割となり, ティース部における要素はベースモデルと 同様に分割し, バックヨークの軸方向分割に合うようにティース の磁路を Fig. 7 の右図のように接続した. Fig. 7 にある各シンボ ルの意味は Table 1 と同様であり, *F_{re}* はリアクトルコイルに流れ る電流による起磁力である.

Fig. 7 Division of model in axial direction.

より正確な解析結果を得るため, Fig. 4 および Fig. 7 の回路中 の磁気抵抗は材料の非線形磁気特性を考慮した.材料の磁化曲線 は(1)式のように,磁束密度 Bのべき指数で近似できる.

$$H = \alpha_1 B + \alpha_n B^n \tag{1}$$

ここで、*H*は磁界の強さであり、*a*」及び*a*」は磁化係数と呼ばれ、 材料によって決まる定数である。今回の検討に使われた電磁鋼板 35JN210の *B*-H特性を Fig.8に、圧粉磁心 HB3_rev1_20deg の *B*-H特性を Fig.9に示し、それぞれの係数の値を Table 2 に示す。 近似した圧粉磁心の *B*-H特性において、磁束密度が低い領域に誤 差が生じるが、今回の検討ではネオジム焼結磁石を使用し、提案 モータが最大出力運転時の特性を検討するため、磁束密度が 1 T 以上の領域を主に使用している。

非線形磁気抵抗 R_m は磁束 ϕ の大きさによって値が変化し、磁路長 l、要素の断面積 S、近似した係数 $a_1 \ge a_n$ 、べき指数 $n \ge n$ 用いて、(2)式で表わすことができる.

$$R_m = \frac{\alpha_1 l}{S} + \frac{\alpha_n l}{S^n} \phi^{n-1} \tag{2}$$

上式にモータ各部位の寸法を代入すると非線形磁気抵抗の値を 算出し、周方向に48個展開するとモータとリアクトル一体構造で 解析が可能となる.

Fig. 8 Approximate B-H characteristics of 35JN210.

Fig. 9 Approximate B-H characteristics of HB3_rev1_20deg.

	Table 2	2 Values	of fitted	coefficients.
--	---------	----------	-----------	---------------

	35JN210	HB3_rev1_20deg
α_1	90.59	2346.59
α'n	4.42	20.31
п	13	11

3.3 RNA モデルの妥当性検証

提案した磁気デバイス一体構造モータの RNA モデルの妥当性 を検証するために解析ソフトウェア OrCAD PSpice Ver.17.4(Cadence Design Systems株式会社)を用いた RNA モデ ルと,解析ソフトウェア JMAG Ver.22.0(株式会社 JSOL)を用いた FEM モデルによる電磁界解析を行い,それぞれにより算出した特 性を比較する. Table 3 に計算条件を示す. RNA モデルの入力は, Fig. 7 に示す巻線起磁力に振幅が巻数×電流振幅となる正弦波を 与えており, FEM モデルに与える電流入力条件に合わせている. 両者ともに電気角ー周期分において 0.0025s までモータコイルに 振幅 270 A の三相交流電流を与え,リアクトルコイルが無通電と 390 A の直流電流の2条件で検討を行っている.

Fig. 10(a)にリアクトルコイルが無通電状態のトルク特性,同図 (b)ににリアクトルコイルが通電状態のトルク特性を示す.Fig. 10 において今回作成した RNA モデルはトルクリップルを表現して いないが、リアクトルコイルに流す電流が変化しても、解析した 平均トルクはRNAモデルとFEM モデルとで同等の値を得られて いることから、構築した RNA モデルの妥当性が確認できる.

Table 6 billiadon contaitions.				
	RNA model	FEM model		
Simulation mode	Transient response analysis			
Maximum motor phase current	$270\mathrm{A}$			
Frequency of three-phase current source	400 Hz			
Current in reactor coil	0 A/390 A			
Number of turns of reactor coil	10 turns			

Table 3 Simulation co	onditions.
-----------------------	------------

(a) The current in reactor coil is 0 A.

(b) The current in reactor coil is 390 A. **Fig. 10** Torque characteristics for RNA and 3D-FEM models.

4. 特性算定結果

前章で構築した RNA モデルを用いて、ベースモデルと磁気デバ イス一体構造モータの N-T特性の計算結果について述べる.

Fig. 11(a)にベースモデルの計算回路,同図(b)に磁気デバイスー体構造モータの計算回路を,Table 4 に計算条件を示す.ベースモデルは三相 PWM インバータでモータを駆動し,バッテリ電圧を600 V,モータに入力する最大電流を270 A とした.これに対して,提案した磁気デバイス一体構造モータでは駆動回路に昇圧コンバータを加えて,バッテリ電圧を300 V,デューティ比を0.5 としてコンバータで2 倍昇圧し,インバータの入力電圧が600 V になるように設定した.磁気デバイス一体構造モータにおけるリアクトル巻線は,昇圧に必要なインダクタンスを得るために10 ターンとした.

Fig. 12に RNA で求めた提案モデルとベースモデルの N-T特性 の比較を示す.この図をみると、低速領域動作時においては提案 モデルの出力がベースモデルより低いことがわかる.一方、弱め 界磁制御電流が必要な高速領域において、提案モデルは誘起電圧 がバックヨークの飽和で低下し、高速領域でも出力が低下しない 結果となった.

(b) Analysis circuit for proposed model.Fig. 11 Analysis circuits for base and proposed models.

	Base model	Proposed model	
Simulation mode	Transient response analysis		
Control method	MTPA & flux weakening control		
Maximum motor phase voltage	300 V		
Maximum motor phase current	270 A		
Average current in reactor coil		390 A	
Carrier wave frequency	$50000 \ \mathrm{Hz}$		
DC voltage	600 V	300 V	
Converter duty cycle		0.5	

Table	4	Simu	lation	cond	itions
rabic	-	DIIIU	auton	COLIG	LIUUUUS.

5. まとめ

本稿では、モータ駆動系の小型軽量化および出力の向上を目指 し、DC/DC コンバータに用いる昇圧リアクトルとモータを一体化 した構造を提案した.これにより、DC/DC コンバータユニットに おけるリアクトル容積をゼロにすることが可能になった.さらに RNAによる解析の結果から、高速回転時において従来のSPM モ ータより高い出力が得られることが示された.

今後は、本稿にて作成したモデルをベースとし、提案する磁気 デバイス一体構造モータの効率特性およびリアクトル構造変更に よるトルク特性の改善について検討する.

References

- 1) IEA: Energy Technology Perspectives, (2017).
- C. Takahashi: Who will be the next electric car user? -Survey on willingness to purchase electric vehicles using mif., (in Japanese), p. 24 (MRI Research Associates, 2019).
- H. Matsumori: J. Jpn. Soc. Appl. Electromagn. Mech., 30, 33, (2022) (in Japanese).
- L. Zhang, Y. Yoshida, K. Tajima: *The Paper of Technical Meeting on Magnetics*, *IEE Jpn.*, MAG-22-089 (2022) (in Japanese).
- Y. Yoshida, K. Nakamura, O. Ichinokura: J. Magn. Soc. Jpn., 37, 278 (2013) (in Japanese).

2023年10月23日受理, 2023年11月16日採録