磁界印加速度変化型磁気カー効果装置を用いた 保磁力測定による熱安定性の評価

Evaluation of thermal stability using magnetic Kerr effect with applied field of various sweep rate

宮嶋利之^{a)†}・遠藤拓^{b)}・鈴木良夫^{b)} ^{a)}日本大学大学院,福島県郡山市田村町徳定字中河原1(〒963-8642) ^{b)}日本大学,福島県郡山市田村町徳定字中河原1(〒963-8642)

T. Miyajima ^{a)}[†], H. Endo ^{b)}, and Y. Suzuki ^{b)}

^{a)} Graduate School of Engineering, Nihon University, *Koriyama, Fukushima 963–8642, Japan*

^{b)} College of Engineering, Nihon University, *Koriyama, Fukushima 963–8642, Japan*

The thermal stability of perpendicular magnetic films with different anisotropy fields, $H_{\rm K}$, was evaluated from the coercivity change due to variations of the sweep-rate of the magnetic field in Kerr effect measurements. The sweep-rate of the magnetic field increases as the maximum field is increased, enabling the coercivity, H_c , to be measured over a range of sweep-rates. The variation of H_c due to changes in the sweep-rate can then be used to evaluate the thermal stability of the samples as the coercivity variation becomes wider in a thermally unstable sample. This technique allows the thermal stability to be measured using a Kerr magnetometer with a pulsed magnetic field.

Key words: thermal stability, coercivity, magnetic Kerr effect, residual coercivity, field change rate

1. はじめに

磁気記録媒体において,記録密度を増加させるには,磁 性粒子の微細化が必要となる.しかし,磁性粒子の微細化 を行うと,磁化反転のエネルギー障壁が低くなり,熱のエ ネルギーだけでエネルギー障壁を乗り越えてしまう熱ゆら ぎの効果が大きくなる.この熱ゆらぎにより記録した情報 の消失が大きな問題となる.熱ゆらぎを評価するために磁 界印加速度を変えたときの保磁力の変化が測定されている. 磁界印加時間と保磁力の関係の代表的な式として, Sharrock の式^{1,2)}がある.

$$H_{c}(t) = H_{K}\left\{1 - \left[\left(\frac{kT}{K_{u}V}\right)ln(At)\right]^{\frac{1}{2}}\right\}$$
(1)

ここで H_c は保磁力, H_K は異方性磁界, kはボルツマン定 数, Tは絶対温度, K_u は異方性定数, Vは粒子の体積, Aは周波数因子, tは磁界印加時間である.この式による磁界 印加時間に対する保磁力の変化を Fig. 1 に示す. 横軸の時 間は, 対数表示である.保磁力 H_c は時間の関数であり, + 分に短い時間では,保磁力 H_c は異方性磁界 H_K に近づく. 異方性磁界 H_K が大きいほど,保磁力 H_c の値は大きくなり, 磁界印加時間が長くなるにつれて H_c は減少する.一方, 熱 ゆらぎの指標として一般的に使われる $K_u V k T$ は, 熱エネ ルギーに対する異方性エネルギーの比率である.この熱ゆ らぎの指標の値が大きいほど,熱に対する記録情報の劣化 が少ないことが期待される. Sharrockの式に当てはめると, K_u が大きい(熱安定性が高い)場合には減衰項が小さくな り,磁界印加時間に対する H_c の変化量は小さくなる.つま り,磁界印加速度が遅い測定での保磁力と磁界印加速度が

Fig. 2 m-H curves of the samples.

速い測定での保磁力の差は小さくなる.一方, K_uの小さい 試料では,熱安定性が低いため H_eが時間によって大きく変 化することになる.ここで,磁界印加速度が低速と高速の H_c の差を ΔH_c と定義する.熱安定性が高い試料は、 ΔH_c が小さく、熱安定性が低い試料は、 ΔH_c が大きい.つまり、 磁界印加速度の異なる測定での保磁力の変化 ΔH_c を比較 することにより、熱安定性が評価できる.これらの手法を 用いた報告としては、島津らによるパルス磁界を用いて磁 界印加速度 10⁸ [Oe/s]での残留磁化曲線を求め、これと一 般的な測定速度の VSM で得られた残留磁化曲線の比較か ら熱安定性を議論したものがある ^{3,4}.

本研究では、磁界印加時間がミリ秒程度のパルス磁界を 印加した際の磁化曲線を磁気カー効果測定装置を用いて測 定し、その磁化曲線から得られた保磁力の差から熱安定性 が評価できるか検討した.特に、従来よりも簡便で短時間 に熱安定性が評価できる方法の探索を目的とした.

2. 実験方法

試料としては、2 種類の垂直磁化膜を使用した. Fig. 2 に試料の磁化曲線を示す. ただし縦軸は、磁気モーメント である. 試料1は, 組成 Co 69.1 Cr 13 Pt 17.9 [at.%], 飽和磁 化 M_s = 249.9 [emu/cm³], 保磁力 H_c = 1850 [Oe], 異方性 磁界 HK = 8100 [Oe], 異方性定数 Ku = 0.999×106 [erg/cm³]であり, 試料2は, 組成Co 64.9 Cr 15.4 Pt 19.7 [at.%], $M_{\rm s} = 212.1 \ [\text{emu/cm}^3], \ H_{\rm c} = 2200 \ [\text{Oe}], \ H_{\rm K} = 8900 \ [\text{Oe}],$ Ku = 0.954×10⁶ [erg/cm³]である. いずれも磁性層の層厚 15 [nm],結晶粒子の平均半径 4.5 [nm]である.ここで HK は、困難軸方向での磁化曲線から求めた.上述のパラメー ター,特にKuから2つの試料の熱安定性について考える. 試料1と試料2を比べると,試料1の方がKuが大きいた め、Sharrockの式における減衰項が小さくなる.また、同 試料で磁界印加速度の異なる測定を行えば,その2つの保 磁力の差 ΔH_{c} が求められる. Sharrock の式によると、 Δ H。が小さい方が熱安定性が高いと言えるため、試料1を熱 安定性が高い試料とし、試料2を熱安定性が低い試料とし て,様々な測定を行っていく.

Fig. 3に磁気カー効果を用いた磁化反転測定装置(磁気 カー効果装置)の概略図を示す.レーザー発振器から照射 された光は,偏光板1を通り試料に達する.このとき,磁 気カー効果により磁化の方向に比例した大きさで偏光面が 回転し,反射する.ここで,その反射光を遮るように偏光 板2を調節する.次に,試料に先程とは反対方向に磁界を 印加すると,反射光の偏光面が回転し,光電子増倍管に達 する.この光強度は,試料の磁化方向に比例しているため, 光強度の測定は,磁化方向の測定と等価になる.

Fig. 4 に測定に用いたパルス磁界の波形を示す.パルス 磁界は、コンデンサに充電した電荷をコイルに放電するこ とによって発生させている.そのため、パルス磁界の立ち 上がりでの磁界印加速度は、充電する電圧によって異なっ てしまう.そこで、パルス磁界の立ち上がりの 20 [%]と 80 [%]の 2 点間の傾きから平均磁界印加速度を求めた.平均磁

Fig. 3 Magnetization reversal measurement system using magnetic Kerr effect.

Fig. 4 Wave form of pulsed magnetic field.

界印加速度は,最大磁界が大きくなるにつれ速くなり,両 者は比例関係にあることを確認した.保磁力は磁界印加速 度によって変化するため,正確な検証をするためには,平 均的な磁界印加速度よりも,保磁力付近での瞬間的な速度 の方が適している.以降の磁界印加速度は,保磁力付近で の瞬間速度である.

3. 実験結果及び考察

3.1 試料1と試料2の磁化曲線

実験方法で述べた通り、本研究では、磁気カー効果装置 を用いて磁化方向に相当する光強度を測定している.この 際、同時刻のパルス磁界の時間応答も測定しておけば、時 間を媒介として、磁化曲線が描ける.

この装置を用いて光強度の測定を行ったところ,非磁性 体である Si 基板試料でも光強度変化が観測されてしまっ た.そこで,磁性体である試料とSi 基板の光強度波形の差 をとることで,磁性に由来する本来の波形を抽出すること にした.光強度から磁気モーメントへの変換は,以下のよ うな方法で行った.あらかじめ VSM 装置で残留磁化(*M*_r) と飽和磁化(*M*_s)を測定しておく.*M*_s は磁界印加速度に 依存しないが,*M*_rは磁界印加速度に依存する.そこで,磁 気カー効果装置での測定では、まず十分に大きな負の磁界 を印加して磁化反転させ、その後 Mr が一定値になるのに 充分な時間をおいてから、磁化変化の測定を行った. つま り、磁気カー効果装置での初期状態である-Mr は VSM 装 置での測定と同じとなる. 従って、光強度の変化量は VSM 装置で測定した M-H曲線の-Mr から Mr までの幅に相当 することとなり、既知である VSM 装置での測定の Mr と Mr の比率を用いて、光強度曲線に磁界軸(M=0)を引くこ とができる. また、VSM 装置の磁化曲線の縦軸から光強度 の値を磁化の絶対値に換算することができる.

Fig.5に磁気カー効果装置で測定した試料1の磁化曲線 を示す. 保磁力付近を見ると, 保磁力の値がバラついてい ることがわかる.これは最大磁界が変わると,磁界印加速 度が変化し,それに伴い保磁力も変化するためである. Fig. 1のモデル図において、磁気カー効果装置での磁界印加時 間は,一点であったが,実際は,磁界印加速度の変化によ り保磁力に変化が生じた.この現象を説明するために Fig. 1のモデルを変更したものを Fig. 6 に示す. 磁気カー効果 装置での磁界印加時間の幅を h, b とする. この時間幅に より、保磁力も変化し、その幅を△Hc'と新しく定義した. また, Fig.1 で定義していた Δ H_cは,磁界印加速度の差の 中点から求められる保磁力と VSM 装置から求められる保 磁力の差として再定義する.磁気カー効果装置での磁化曲 線 (Fig. 5) に示すようにそれぞれの値は、ΔH² = 500 [Oe], ΔH_c=1650 [Oe]となった.次に, Fig. 7 に磁気カー効果装 置で測定した試料2の磁化曲線を示す. 保磁力付近を見る と試料1の磁化曲線(Fig. 5)よりも保磁力の変化量が大 きいことがわかる.磁界印加速度は,1.8 [MOe/s]から2.3 [MOe/s]まで変化し、それに伴い保磁力は、3390 [Oe]から 4350 [Oe]まで変化した. その結果 Fig. 7 に示すようにΔ $H_{c}^{*} = 960 \text{ [Oe]}, \quad \Delta H_{c} = 1670 \text{ [Oe]} \geq c c c.$

しかし, Fig. 5 と Fig. 7 の磁化曲線の磁界印加速度の幅 が異なってしまった.磁気カー効果装置で測定した Hc と VSM 装置で測定した Hcを磁界印加時間 t でプロットし直 したものを Fig. 8(a)に示す. これらの Hc に近似線をフィ ッティングした.この近似線の交点から同じ時間幅におけ る試料1と試料2の保磁力の差を求めることができるよう になった. これを新しく ΔH_{c-fit} と定義した. 試料 1 の Δ $H_{c_{\text{-ft}}}$ は、271 [Oe]となり、試料 2 の $\Delta H_{c_{\text{-ft}}}$ は、295 [Oe] となった. また,時間幅を統一したことにより, ΔH_c も計 算し直した. それを Fig. 8(b)に示す. 再計算した値を Δ H_c _fitとした. 試料1のΔHc_fitは1579 [Oe]となり, 試料2 の ΔH_{c-fit} は、1760 [Oe]となった、このFig. 8(a)と(b)から、 どちらの保磁力の差でも試料1の方が値が小さくなった. 値が小さい方が熱安定性が高いため、試料1の方が試料2 より、熱安定性が高いことがわかる.これは、異方性定数 Kuから予想される順と一致している.

Fig. 5 m-H curves of sample 1 measured using magnetic Kerr effect.

Fig. 6 Coercivity vs. time in logarithmic scale.

Fig. 8(a) $\Delta H_{c-fit}^{\prime}$ vs. time in logarithmic scale

Fig. 8(b) ΔH_{c-fit} vs. time in logarithmic scale.

3.2 試料1と試料2の残留磁化曲線

一般に磁化曲線は、可逆部分と不可逆部分に分けること ができる.熱の影響は、不可逆部分に関わるため、正確な 熱安定性を評価するためには、不可逆成分である残留磁化 曲線から求められる残留保磁力 Hr を求めることが望まし い.Fig.9に残留磁化曲線の測定方法を示す.磁化曲線上 の任意の点から磁界を零にした時の残留磁化を印加磁界に 対してプロットしていく.これにより残留磁化曲線が描け る.その残留磁化曲線と磁界軸との交点が残留保磁力 Hr と呼ばれている.

Fig. 10に試料1の残留磁化曲線を示す.破線は,磁気カ ー効果装置で測定した残留磁化曲線である.実線は,VSM で測定した残留磁化曲線である.磁気カー効果測定の残留 保磁力 H_rは,3491 [Oe],VSMの残留保磁力 H_rは,3172 [Oe]となり,磁気カー効果測定の残留保磁力の方がVSMの ものより大きくなった.磁気カー効果測定の残留保磁力と VSM の残留保磁力の差をΔH_rと定義した.試料1ではΔ

Fig. 9 The method of obtaining the residual magnetization curve.

Fig. 10 Residual magnetization curve of sample 1.

Fig. 11 Residual magnetization curve of sample 2.

 H_r は 319 [Oe]となった. Fig. 11 に試料 2 の残留磁化曲線 を示す. 磁気カー効果の残留保磁力は,3456 [Oe],VSM の残留保磁力は,2855 [Oe]となり,試料 2 での ΔH_r は 601 [Oe]となった. 試料 1 と試料 2 の残留保磁力の差 ΔH_r を比 較すると試料 1 の方が値が小さくなった.この残留保磁力 の差 ΔH_r も値が小さい方が熱安定性が高いため,試料 1 の 方が試料 2 より,熱安定性が高いことを示唆している.

3.3 磁界印加速度の違いによる△H_{-fit} と△H_i²-fit と△H の比較

Table1 に試料 1 と試料 2 の ΔH_{c-fit}° , ΔH_{c-fit}° , $\Delta H_{r}e^{-}$ 示す. どの指標でも試料 1 の方が試料 2 に比べて保磁力の 差の値が小さいことがわかる. このことは, 試料 1 は試料 2 に比べて熱安定性が高いことを意味している. 熱の影響 だけを評価するには, ΔH_{r} で比較するのが最も正確である が, ΔH_{r} を求めるには, 磁気カー効果の残留磁化曲線と VSM の残留磁化曲線の両方の結果が必要になるため, 熱安 定性の比較に時間がかかる. しかし, ΔH_{c-fit}° ならば, 磁 化曲線のみで熱安定性を簡易的に短時間で評価できる.

Table 1Difference of coercivity of the samples.

$(\Delta H_{ m c^{\prime}-fit}, \Delta H_{ m c-fit}, \Delta H_{ m r})$			
	Δ $H_{ m c-fit}$	$\Delta H_{ m c-fit}$	$\Delta H_{ m r}$
	[Oe]	[Oe]	[Oe]
Sample 1	271	1579	319
Sample 2	295	1760	601

4. まとめ

本研究では、磁界印加速度を変えることができるパルス 磁界を試料に印加した際の磁化応答を磁気カー効果装置を 用いて測定した.磁気カー効果装置による測定において、 磁界印加速度の変化による磁化曲線の保磁力の差を ΔH_{c-ft} 定義した.一方、VSM 装置での保磁力測定と磁気カー効 果装置での保磁力測定という時間幅が広い場合での保磁力 の差を ΔH_{c-ft} と定義した.また、VSM 装置と磁気カー効 果装置から得られる残留保磁力の差を ΔH_r とした.これら 3 つの保磁力の差は、いずれも、値が小さい方が熱安定性 が高いことを示しており、2 つの試料における、3 つの保磁 力測定結果(ΔH_{c-ft} , ΔH_{c-ft} , ΔH_r)は、全て同じ傾向 を示した.このことから、本研究で提唱した ΔH_{c-ft} ,によ る熱安定性の評価は、より簡便に熱安定性の評価ができる ため、多くの試料の熱安定性を評価するのに適しているこ とが確認された.

References

- P. J. Flanders and M. P. Sharrock: J. Appl. Phys., 62, 2919 (1987).
- 2) M. P. Sharrock: J. Appl. Phys., 76, 6413 (1994).
- T. Shimatsu, H. Uwazumi, I. Watanabe, H. Muraoka, and Y. Nakamura: J. Magn. Soc. Jpn., 25, 539 (2001).
- T. Shimatsu and H. Aoi: *Magnetics Japan*, 2, No.1, 20 (2007).

2016年10月11日受理, 2016年12月10日再受理, 2017年1月26日採録