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Optimum preparation conditions of Fe-deficient Ca-based  
M-type ferrite 

 
M. Shigemura, K. Watanabe*, K. Kakizaki, and K. Kamishima 

Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, Japan 
*Biomolecular Characterization Unit, Center for Sustainable Resource Science, RIKEN, 2-1 Wako, Saitama 351–0198, Japan 

 
We investigated synthesis conditions and magnetic properties of Fe-deficient Ca-based hexagonal ferrites, 

Ca1−xLaxFeyO19−σ (x = 0.1–0.3, y = 2.0–10), and found the formation of M-type ferrite at x = 0.1–0.3 and y = 7.0–9.0 
above 1200°C. Samples of y = 2.0–6.0 showed deviation from the initial compositions since molten calcium-rich oxide 
(possibly CaFe2O4) leaked out from the samples above 1200°C. The X-ray diffraction pattern of Ca0.8La0.2Fe8.0O19−σ 
sintered at 1250°C demonstrates the single phase of M-type hexagonal ferrite. The saturation magnetization of this 
sample was 68.0 Am2/kg at room temperature and its Curie temperature was about 400°C, which is slightly lower 
than that of the Sr-based M-type ferrite (460°C). 
 
Keywords: hexagonal ferrites, M-type, calcium compound 
 

 
1. Introduction 

  
M-type ferrite is a type of hexagonal ferrite. Its 

chemical formula is expressed as M2+Fe3+12O19 

(M2+=Ba2+, Sr2+). The M-type ferrite has high saturation 
magnetization and high coercivity and is mainly used 
as a permanent magnet. The Curie temperatures of 
BaFe12O19 and SrFe12O19 are 450°C and 460°C, 
respectively.1)-4) 

The unit cell of M-type ferrite is composed of two kinds 
of block units, where a R-block and a S-block are 
stacked up alternately (RSR*S*). The symbol * means 
180° rotation of the corresponding block around the 
c-axis.1), 3), 4) The M-type ferrite has ions of 2(MFe12O19) 
in the unit cell (RSR*S*), as shown in Fig. 1. 
The S-block with the chemical formula of (2Fe3O4)2+ is 

identical to the cubic spinel structure. Two close-packed 
large oxygen anion layers (O layers) build the 
framework of the S-block. One octahedral (up-spin) and 
two tetrahedral (down-spin) sites exist for small Fe3+ 
cations in the S-block. 1), 3), 4) 
The R-block contains another kind of close-packed 

large ion layer with M2+:O2− = 1:3 (M-O layers). The 
R-block with the chemical formula of (MFe6O11)2− is 
made up of three large-ion layers where one M-O layer 
is sandwiched between two O layers. A 
trigonal-bipyramidal (up-spin) site is just on the M-O 
layer in the R-block. Two octahedral (down-spin) sites 
are between the M-O and O layers in the R-block. There 
are three octahedral (up-spin) sites just on the block 
border between the S- and R-blocks.1), 3), 4)    
Because an Fe3+ ion has the magnetic moment of 5 μB, 

the total magnetization at zero temperature can be 
estimated from the numbers of the up and down spins 
with the assumption of a collinear magnetic structure. 
Typical M-type ferrite has eight up spins and four down 
spins as shown in Fig. 1. Hence, the net magnetization 
per formula unit is (8−4)×(5 μB) = 20 μB.1), 4) 
In this study, we investigated the synthesis conditions 

of Ca-based M-type ferrites. Ca is one of the alkaline 
earth elements. It is attractive to substitute Ca ions for 
Ba or Sr ions in the hexagonal ferrite because Ca is rich 
in resouces.5) Also, the use of Ca, which is less toxic 
than Ba, is helpful in terms of producing a safer 
material. 
 The synthesis of Ca-based hexagonal ferrites is, 

however, extremely difficult because the M-type 
composition sample with Ca:Fe = 1:12 tends to melt and 
decompose into α-Fe2O3, CaFe4O7, and CaFe2O4. 6)-8)  
On the other hand, the Ca-based M-type hexaferrite 

can be synthesized by adding a small amount of La in 
oxygen atomosphere.9), 10) This Ca-based M-type ferrite 
exists as a ternary oxide of CaO-La2O3-Fe2O3 because 
there is no M-type CaFe12O19 in the binary CaO-Fe2O3 
phase diagram as mentioned above. Most of the 
previous studies, however, treated La2O3 as an additive

Fig. 1 Spin alignment in the unit cell of the M-type 

ferrite. 
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Fig. 3 X-ray diffraction patterns of Ca0.8La0.2FeyO19−σ 

(y = 2.0–9.5) sintered at 1250°C. 

Fig. 4 X-ray diffraction patterns of Ca0.8La0.2Fe.8.0O19−σ 

sintered at 1200°C, 1250°C, and 1300°C. 

to CaFe12O19.9)-12) The systematic research was limited 
at ratio of Fe/(Ca+La)>10 although Fang reported that 
they obtained the M-type phase by reducing the amount 
of Fe.13) So, the synthesis conditions in air remain 
unclear. The synthesis condition of the Ca-based M-type 
ferrite was not systematically surveyed below 
Fe/(Ca+La) = 9. Therefore, we studied three synthesis 
conditions: the composition ratio of Ca:La, the ratio of 
(Ca+La):Fe, and the sintering temperature. 
 

2. Experimental Procedure 
 Samples of Ca-based M-type ferrite were prepared by 

a conventional ceramic method. We used CaCO3, La2O3, 
and α-Fe2O3 as starting materials. They were mixed in 
a desired proportion, Ca1−xLaxFeyO19−σ (x = 0.1–0.3, y = 
2.0–10). The powder was ball-milled for 24 h. The mixed 
powder was pressed into a pellet shape and pre-calcined 
in air at 900°C. The sintered sample was pulverized in 
a mortar and then milled into fine powder with a 
planetary ball mill (Fritsch, P-7 Premium line with 1 
mm zirconia balls and a 45 ml zirconia container) for 
10 min. at 1100 rpm. The processed powder was dried 
and then pressed into disks. The disks were sintered at 
1100 to 1300°C for 5 h. Parts of some sintered samples 
at y≤6 were molten above 1250°C. We removed the 
molten portion adhering to the pellet and employed the 
remaining part as a sample for measurements. The 
crystal structure of the sample was examined by 
powder X-ray diffraction (XRD) analysis with Cu-Kα 
radiation. The magnetization was measured with a 
vibrating sample magnetometer (Tamakawa 
TM-VSM2130HGC) and a superconducting quantum 
interference device (SQUID) magnetometer (Quantum 
Design MPMS-XL). The composition was analyzed by 
the use of an Electron Probe Micro Analyzer (EPMA) 
(JEOL, JXA-8200). Here, the composition of oxygen was 
not examined because the analyses of light elements 
are less accurate than those of heavy elements.  

 
3. Results and discussion 

Figure 2 shows the room-temperature saturation 
magnetization of Ca0.8La0.2FeyO19−σ (y = 2.0–9.5) 
sintered at 1200–1300°C. The saturation magnetization 
was high for the samples sintered above 1250°C with y 
= 3.0–8.0. However, deviations from the initial 
compositions seems to take place below y = 6.0 because 
molten oxides separated out from these initially 
poor-iron samples, as shown in the inset of Fig. 2. 
Actually, the EPMA measurement of the sample with 
the initial composition of y = 4.0 sintered at 1250°C 
showed the average atomic ratio of Ca:La:Fe = 
0.76:0.24:8.53, demonstrating a great deviation from 
the initial composition. The composition of the molten 
oxides is possibly close to Ca:Fe = 1:2 because CaFe2O4 
has the lowest melting point of 1216°C in the 
CaO-Fe2O3 system.6)-8) The maximum saturation 
magnetization is 68.0 Am2/kg for the sample with the 

Fig. 2 Saturation magnetization at room temperature 

of Ca0.8La0.2FeyO19−σ (y = 2.0–9.5) sintered at 1200, 

1250°C and 1300°C. Open markers indicate the 

samples whose molten portion was removed. 

 



12 Journal of the Magnetics Society of Japan Vol.41, No.1, 2017

INDEXINDEX

Fig. 5 X-ray diffraction patterns of Ca1−xLaxFe8.0O19−σ 

(x = 0.1–0.3) sintered at 1250°C. 

Fig. 6 Temperature dependence of magnetization of 

Ca1–xLaxFe8.0O19–σ (x = 0.1–0.3) sintered at 1250°C. 

 

 

Table 1 Lattice constants of Ca1−xLaxFe8.0O19−σ 

sintered at 1250°C. 

 

initial composition of Ca:La:Fe = 0.8:0.2:8.0 sintered at 
1250°C. 
Figure 3 shows the X-ray diffraction patterns of the 

samples with the initial compositions of Ca:La:Fe = 
0.8:0.2:y (y = 2.0–9.5) sintered at 1250°C. The main 
phase is M-type ferrite for the samples with y≥3.0.14), 15) 
However, the compositions of the samples with y≤6.0 
are different from the initial compositions because 
molten calcium-rich oxide (possibly CaFe2O4) was 
separated out from the samples sintered at T≥1250°C. 
Also, there are minor α-Fe2O3 peaks in the X-ray 
diffraction patterns of the samples with y≥9.1. 
Therefore, the initial composition of y = 7.0 or 8.0 is 
suitable for the preparation of Ca-based M-type ferrite.  
Figure 4 shows the X-ray diffraction patterns of 

Ca0.8La0.2Fe8.0O19−σ sintered at 1200°C, 1250°C, and 
1300°C. The main phase of these samples is M-type 
ferrite. However, the sample sintered at 1200°C also 
has the secondary phases of CaFe2O4 and α-Fe2O3. 
Since the raw material of α-Fe2O3 remains, the 
sintering temperature of 1200°C is still insufficient for 
the formation of Ca-based M-type phase. On the other 
hand, if the sintering temperature was higher than 
1300°C, the separation of molten oxides also took place, 
similar to that shown in the inset of Fig. 2. Therefore, 
the sintering temperature of about 1250°C is suitable 
for the preparation of Ca-based M-type ferrite. 
Figure 5 shows the X-ray diffraction patterns of 

Ca1−xLaxFe8.0O19−σ (x = 0.1–0.3) sintered at 1250°C. The 
samples of x = 0.2 and 0.3 have the single phase of 
M-type ferrite, but the sample of x = 0.1 has the mixed 
phases of M-type and α-Fe2O3. The raw material of 
α-Fe2O3 remains in the Ca-rich sample with x.2. The 
lattice constants of these samples are shown in Table 1. 
The lattice constants of samples are close to those of 
SrM. On the other hand, the c-axis lattice constants are 
smaller than that of BaM. This is caused by the 
difference in the ionic radii because the ionic radii of 
Ca2+, La3+, Sr2+, and Ba2+ are 1.12 Å, 1.16 Å, 1.26 Å, and 
1.42 Å, respectively.16) The Ba cations with the large 
ionic radius may expand the c-axis of the BaM ferrite. 
Figure 6 shows the temperature dependence of 

magnetization of Ca1−xLaxFe8.0O19−σ (x = 0.1–0.3) 
sintered at 1250°C. The Curie temperatures of these 
samples were about 400°C, which is slightly lower than 
that of the Sr-based M-type ferrite (460°C).2)  
Table 2 shows the experimental results of the chemical 

composition analysis of the maximum saturation 
magnetization sample with the initial composition of 
Ca:La:Fe = 0.8:0.2:8.0 sintered at 1250°C. The 
compositions of Ca and La are similar to the initial 
amounts, but the composition of Fe is slightly larger 
than the initial amount. Therefore, the M-type ferrite 
was formed with the composition of 
Ca0.83La0.17Fe8.9O19–σ. The difference from the initial 
composition may be caused by low-melting-point 
calcium-iron oxides such as CaFe2O4 that can be eluted 
off from the M-type grain.  

Figure 7 shows the magnetization curves at 5 K 
( 268°C) and 300 K (27°C) of Ca0.8La0.2Fe8.0O19 σ 
sintered at 1250°C. The spontaneous magnetization at 5 
K ( 268°C) is estimated to be 14.7 μB/f.u (104 Am2/kg) 
by linear extrapolation of the magnetization curve from 
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Table 2 The result of composition analysis of 

Ca0.8La0.2Fe8.0O19-σ sintered at 1250°C. 

 

Fig. 7 Magnetization curves at 5 K (−268°C) and 300 

K (27°C) of Ca0.8La0.2Fe8.0O19−σ sintered at 1250°C. 

 the high field region of 2≤μ0H≤7 T.  
We would like to estimate the magnetic moment of the 

Ca-based hexaferrite. The hexaferrite (MFe12O19; 
M=Ba2+, Sr2+) consists of the R-block ([MFe6O11]2−) and 
the S-block ([2Fe3O4]2+), as shown in Fig. 1. The spin 
arrangements in the R- and S-blocks are similar to each 
other in spite of the different block structures. There is 
one central up-spin site between two down-spin sites in 
each block. There are three up-spin sites between the 
R-blocks and S-blocks. Therefore, the spin distribution 
is such that the number of up-spin sites is twice that of 
the down-spin sites (up:down = 2:1).  
The EPMA analysis implied that the chemical formula 

was approximately Ca0.8La0.2Fe9.0O14.6 as shown in 
Table 2. Here, the composition ratio of oxygen is 
estimated from the charge balance with the 
concentration of Ca2+, La3+, and Fe3+ cations. In this 
chemical formula, six of nine spins are in up direction 
and the other three spins are in down direction with 
respect to the spin distribution ratio (up:down = 2:1). 
This estimated magnetic moment of 15 μB/f.u. is 
consistent with the observed magnetization at 5 K 
( 268°C). 

 
4. Conclusion 

We have investigated the synthesis conditions and 
magnetic properties of Fe-deficient Ca-based M-type 
ferrite. The sintering temperature of the best sample 
was 1250°C and the analyzed composition was 
approximately Ca:La:Fe = 0.8:0.2:9.0. The saturation 
magnetization of the best sample was 68.0 Am2/kg at 
room temperature and 104 Am2/kg at 5 K (−268°C). The 
Curie temperature of this sample was about 400°C. 
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Study on Electromagnetic Levitation System for Ultrathin Flexible 
Steel Plate Using Magnetic Field from Horizontal Direction 
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*Course of Mechanical Engineering, Graduate School of Tokai Univ.

In the transport system of a thin-steel-plate production line, the quality of the plate surface deteriorates over time 
because of contact with rollers. As a solution to this problem, we have proposed the use of electromagnets to control 
the horizontal displacement of the steel plate. Vertical force to support the steel plate and horizontal force to suppress 
elastic vibration are applied to the steel plate by using the horizontal electromagnet. Focusing on these forces, we 
proposed a magnetic levitation system for the steel plate using only electromagnets installed in the horizontal direction. 
In this paper, the suspension force in the proposed system is analyzed by the finite element method, and the possibility 
of applying the proposed system for thinner steel plates is considered. Suspension force is effectively generated owing 
to the thinness of the steel plate. The results, indicate the proposed magnetic levitation system to be effective for thin 
steel plates. To verify the validity of the analytical conclusion, an electromagnetic suspension experiment has been 
carried out, and suspension force generated by the electromagnet has been measured. The agreement between the 
experimental and analytical results, confirmed the validity of the analytical results. 

Key words: electromagnetic levitation, thin steel plate, noncontact support, finite element method 

1. Introduction

Thin steel plates are widely used in various industrial 
products. However, there are the problems of the 
deterioration of the surface quality and the occurrence of 
metal plating during transport owing to contact between 
the steel plate and rollers. As a solution to these problems, 
a noncontact transport of steel plates using electro-
magnetic force has been proposed 1)-4). However, in these 
considerations, electromagnets are installed in the 
vertical direction. In this method, if the steel plate is thin 
and does not have sufficient flexural rigidity, it is difficult 
to add suspension force for levitation over the entire steel 
plate. Previously, the electromagnetic levitation system 
for steel plates had electromagnets installed in the 
horizontal direction as well as the vertical direction. This 
system is able to transport a magnetically levitated steel 
plate 5). Moreover, a similar experiment for an ultrathin 
steel plate was performed, and the noncontact transport 
of ultrathin steel plates was demonstrated 6)-7). However, 
since this proposed system requires a number of control 
channels, there are the problems of complexity and high 
cost. 

Because of the magnetic field of the added 
electromagnets, attractive force acts in the steel plate as 
the vertical suspension force as well as the horizontal 
tension force. The tension force can add the suspension 
force to the entire steel plate, and it becomes possible to 
improve the levitation stability. Moreover, the tension 
can prevent the plastic deformation of the steel plate, 
such as dimpling and folding. This can be expected to lead 
to surface quality improvement of the steel plate. 
Focusing on these forces, the feasibility of a magnetic 
levitation system for steel plates using only 
electromagnets installed in the horizontal direction was 

considered. Electromagnetic field analysis by the finite 
element method (FEM) was performed, and we confirmed 
that the proposed system could levitate a steel plate with 
a thickness of 0.3 mm 8). However, these results have not 
been verified experimentally. Furthermore, the 
effectiveness of this system for thinner steel plates has 
not been considered. In this study, the suspension force 
in the proposed system is analyzed by the FEM and the 
applicability of the proposed system to thinner steel 
plates is considered. In addition, electromagnetic 
suspension experiments are performed with the steel 
plate thickness of 0.30 mm or 0.24 mm. To show the 
effectiveness of this system for thinner steel plates, 
analytical and experimental results are discussed in 
detail. 

2. FEM analyses of suspension force of electromagnet

Figure 1 shows an outline of the proposed system. A 
zinc-coated steel plate is levitated and positioned in the 
noncontact mode by the attractive forces of electro- 
magnets that are controlled on the basis of feedback 
signals from laser sensors.  

Fig. 1  Electromagnetic levitation system 
for steel plate using only electromagnets  

installed in horizontal direction. 
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Fig. 2  FE analytical model. 

 

8

8
14 16

60 16

2836

Coil

Ferrite E-type core

( 1005 turns )

 
Fig. 3  Schematic illustration of electromagnet. 

 
In the previous study7), it has been confirmed that this 

control system can control horizontal displacement of the 
steel plate (length 400 mm, width 100 mm, thickness 0.18 
mm, material SS400 steel), and suppress the standard 
deviation of horizontal displacement less than 0.1 mm. 
From the above, it was confirmed that the proposed 
system has a practically sufficient control performance 
for positioning control in the horizontal direction. 
 
2.1 FE model and analytical conditions 

To discuss the effectiveness of this system, suspension 
force is analyzed by the FEM. The electromagnetic field 
analysis is carried out using the finite-element method 
software JMAG (Ver. 11). The analytical model is shown 
in Fig. 2. The steel plate (length 400 mm, width 100 mm, 
material SS400 steel) is levitated with electromagnets 
shown in Fig. 3. In previous studies8), analytical results 
showed that this electromagnet can generate a sufficient 
horizontal tension for positioning control more than 2 
times greater than vertical suspension force. 
Furthermore, it has been confirmed that the steel plate 
is hardly displaced in the control direction with 
horizontal positioning control7). Therefore, the analysis is 
carried out on the assumption that the steel plate does 
not displaced from the control point. 

The analytical conditions are as follows. Vertical 
displacement z is changed from –2 mm to –14 mm. The 
gap between the edge of the steel plate and the surface of 
electromagnets is 5 mm. The steady electromagnet 
current Ix is in the range from 0.1 A to 2.0 A. The  

 
(a) Thickness h = 0.30 mm 

 

 
(b)  Thickness h = 0.24 mm 

Fig. 4  Relationship between thickness of steel plate h 
and vertical attractive force fz for each displacement z. 

 
thickness of the steel plate h is changed from 0.06 mm to 
0.30 mm with each increase in thickness of 0.06 mm. 
 
2.2 Numerical results by FEM 
  Figure 4 shows the relationship between steady 
current Ix [A] and vertical suspension force fz [N]. Figure 
4(a) shows the analytical result for the steel plate with a 
thickness of 0.30 mm. Figure 4(b) shows the result for a 
plate thickness of 0.24 mm. Dotted lines in these figures 
mean the weight of the steel plate. If the generated 
suspension force is equal to the weight of the steel plate, 
the steel plate can be levitated. Analytical results show 
that increasing the steady current leads to upward 
displacement of the steel plate. When the steady current 
is greater than 1.0 A, the suspension force is increased 
gradually, because magnetic saturation occurs in the core. 
When the steel plate is displaced downward, suspension 
force increases. The results in Fig 4(a) indicate that the 
steel plate can be levitated when displacement is greater 
than –6 mm. However, even if the steel plate is displaced 
more than –10 mm, suspension force does not increase 
further. The cause of this result is the magnetic field 
generated from the convex portion of the lower part of 
the electromagnet core. Although suspension force  
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Fig. 5  Relationship between thickness of steel plate h 

and suspension force fz for each displacement z 
(steady current Ix = 2.0 A). 

 
 

 
Fig. 6  Relationship between displacement z and 

suspension force fz for each thickness of steel plate h 
(steady current Ix = 2.0 A). 

 
generally decreases, the result for the plate with 0.24 mm 
thickness shows the same tendency as that for the plate 
with 0.30 mm thickness, as shown in Fig. 4(b). 

Figure 5 shows the relationship between plate 
thickness and suspension force for each displacement 
when the steady current is 2.0 A at maximum. The 
suspension force is reduced in proportion to the decrease 
in the thickness. The reason for this is considered that 
the part for generating suspension force becomes smaller 
when the thickness of steel plate is thinner. Figure 6 
shows the relationship between suspension force and 
displacement for each thickness when the steady current 
is 2.0 A. The suspension force is linearly proportional to 
the displacement when the displacement is less than -8 
mm. In this linear range, even if the steel plate is 
vertically displaced by a disturbance, the suspension 
force acts as a restoring force. With this restoring force, 
the steel plate stabilizes passively.  

Figure 7 shows the relationship between steady 
current and suspension force for each thickness of steel  

 
Fig. 7  Relationship between steady current Ix and 
suspension force fz for each thickness of steel plate h 

(displacement z = –8 mm). 
 
 

 
Fig. 8  Relationship between thickness of steel plate h 

and steady current of operating point 
(displacement z = –8 mm). 

 
plate with z = –8 mm. The dotted lines indicate the 
weight of the steel plate for each thickness. At the 
operating point where suspension force is equal to its own 
weight, the steel plate can be levitated. As the steel plate 
becomes lighter when it becomes thinner, it seems to be 
more easily levitated. On the other hand, the suspension 
force is also decreased. From these analytical result, it is 
found that the decrease in the suspension force is smaller 
than the decrease in the weight of the steel plate. These 
results show that decreasing the thickness of the steel 
plate can reduce the steady current of the operating point. 
The relationship between the thickness of the steel plate 
and the steady current of the operating point is shown in 
Fig. 8. Compared with the result for the thickness of 0.30 
mm, the steady current of the operating point is reduced 
18.4% in the case of the 0.18 mm thickness, and 27.3% in 
the case of the 0.06 mm thickness. Suspension force is 
more effectively generated with increasing thinness of 
the steel plate. The proposed magnetic levitation system 
is superior for thin steel plates that are difficult to 
levitate by the conventional method. 
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Fig. 9  Experimental model of electromagnetic 
suspension force. 

 
 
 

 
 

Fig. 10  Photograph of experimental apparatus for 
electromagnetic suspension. 

 
 

3. Electromagnetic suspension experiment 
  

3.1 Experimental model 
To verify the validity of the above analytical results, 

the electromagnetic suspension experiment is carried out. 
Experimental model is shown in Fig. 9. An electromagnet 
is installed near the end of the fixed steel plate. An eddy-
current-type noncontact displacement sensor is installed 
above the steel plate to measure the displacement of the 
steel plate. Distributed and concentrated loads act on the 
steel plate. Distributed load is due to its own weight, and 
concentrated load is due to suspension force by from the 
electromagnet. 

Vertical displacement z’ [m] of the steel plate without 
suspension force fz [N] from the electromagnet and 
vertical displacement z [m] with fz are expressed as 9) 
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Distributed load f0 [N/m] due to self-weight is expressed 
as 

yghlf 0  , (3) 

where x is the horizontal displacement [m], lx the length 
of the steel plate [m], ly the width of the steel plate [m], h  

Table 1  Parameters and values. 
Parameter Value 

ρ 7500 kg/m3 

lx 0.20 m 

ly 0.10 m 

h 0.30×10-3 m, 0.24×10-3 m 

a 0.115 m 

E 206 GPa 

g 9.81 m/s2 

 

the thickness of steel plate [m], ρ the plate density 
[kg/m3], g the acceleration due to gravity [m/s2], E 
Young’s modulus of the thin steel plate [N/m2], I the 
second moment of area [m4], and a the sensor position 
from the fixed end [m]. 

Suspension force fz is obtained by measuring 
displacements z and z’ at sensor position a, as 

    azaz
ala

EIf
x

z '

26
1 23




  (4) 

 
3.2 Experimental conditions 

Table 1 shows the specifications of the experiment. 
Figure 10 is the photograph of the experimental 
apparatus for electromagnetic suspension. The steel 
plate is fixed with clamps. In the vertical direction, the 
electromagnet is installed at the same position as the 
supporting position. The gap between the surface of the 
electromagnet and the edge of the steel plate end is 5 mm. 
Vertical displacement of the steel plate is measured with 
a sensor when the steady current of the electromagnet is 
changed from 0 A to 2.0 A. In this experiment, the edge 
of the steel plate tilts about 5° due to deflection. This 
experimental condition is different from analytical 
condition in chapter 2. However, the attractive force 
generates locally at the only edge of steel plate8). 
Furthermore, we analyzed previously the attractive force 
generated at steel plate when the steel plate tilts 5°. 
Comparing analytical result of tilt angle 0° and 5°, 
amount of change of the suspension force fz was less than 
5%. Therefore, it is confirmed that the deflection of the 
steel plate does not affect suspension force. 

 
3.3 Experimental results 

Figure 11 shows the relationship between steady 
current and displacement. Figure 11 (a) shows the result 
for the plate with 0.30 mm thickness. Figure 11 (b) shows 
the result for the plate with 0.24 mm thickness. 
Previously, the experimental value measured with a 
sensor was compared with the calculated value with the 
steady current of 0 A. The result has confirmed that the 
differences between experimental and calculated values  

Clamp 

Steel plate 

Eddy-current-type noncontact 
displacement sensor Electromagnet 
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(a) h = 0.24 mm 

 

 
(b) h = 0.24 mm 

Fig. 11  Relationship between steady current Ix and 
measured displacement z by sensor. 

 
are less than 1%. Experimental results show that 
increasing the steady current leads to upward 
displacement of the steel plate. This trend is significant 
when the steady current is less than 0.5 A. 

Figure 12 shows the relationship between steady 
current and suspension force calculated using the 
experimental result. Figure 12 (a) shows the result for 
the plate with 0.30 mm thickness. Figure 12 (b) shows 
the result for the plate with 0.24 mm thickness. The 
plotted point in this figures indicate experimental results. 
Suspension force increases with increasing steady 
current. When the steady current is less than 0.5 A, the 
increment of suspension force is larger. The attractive 
force of the electromagnet is generated at the steel plate 
toward the center of the electromagnet core. If the steel 
plate is displaced further downward, the ratio of 
suspension force to attractive force is larger. On the other 
hand, when the steel plate is displaced upward, the ratio 
of tension to attractive force is larger. It is considered 
that the cause of saturation is upward displacement of 
the steel plate. 

Dashed line in Fig. 12 indicates analytical results of 
suspension force. This analytical suspension force is 
calculated using eq. (2) when the displacement of the  

 
(a) h = 0.30 mm 

 

 
(b) h = 0.24 mm 

Fig. 12  Relationship between steady current Ix and 
calculated suspension force fz for measured 

displacement and analytical results 
 
edge of steel plate coincides analysis condition in chapter 
2. The analytical steady current is obtained using Fig. 4 
when the displacement and analytical suspension force 
coincides analysis condition. 

The experimental results agree the analytical results. 
In the range of size in this paper, deflection of the steel 
plate was experimentally confirmed that seldom effect on 
the suspension force. Furthermore, the agreement of the 
analytical and experimental results shows the validity of 
the realization of the magnetic levitation system only 
using electromagnets in the horizontal direction 
described in the previous section. 

 
4. Conclusion 

  
In our proposed system using only electromagnets 

installed in the horizontal direction, vertical suspension 
force, which was applied to the steel plate by an 
electromagnet, was analyzed for a steel plate thickness 
of less than 0.30 mm. In the range of interest in this study, 
suspension force is more effectively generated as the steel 
plate becomes thinner. The results indicate the proposed 
magnetic levitation system to be superior for thin steel 
plates. To verify the validity of the analytical conclusion, 
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an electromagnetic suspension experiment was carried 
out using an experimental apparatus for electromagnetic 
suspension, and suspension force of the electromagnet 
was measured. The agreement between the experimental 
and analytical results showed the validity of the analysis. 

In the next stage, in order to realize a magnetic 
levitation system for noncontact transport and 
suspension of steel plates, a system with improved 
stability will be designed by installing more 
electromagnets. 
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複写をされる方へ

本会は下記協会に複写に関する権利委託をしていますので，本誌に掲載された著作物を複写したい方は，同協会より許諾を受け
て複写して下さい．但し（社）日本複写権センター（同協会より権利を再委託）と包括複写許諾契約を締結されている企業の社員
による社内利用目的の複写はその必要はありません．（社外頒布用の複写は許諾が必要です．）
権利委託先：一般社団法人学術著作権協会
　　　　　　〒107–0052 東京都港区赤坂9–6–41　乃木坂ビル
　　　　　　電話（03） 3475–5618　FAX （03） 3475–5619　E-mail: info@jaacc.jp
なお，著作者の転載・翻訳のような，複写以外の許諾は，学術著作権協会では扱っていませんので，直接本会へご連絡ください．

本誌掲載記事の無断転載を禁じます．
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