Cr(100)単結晶下地層に形成した Sm-Co_{1-x}Cu_xおよび Er-Co_{1-y}Cu_y合金薄膜の構造解析

大竹充^{1,2}・落合亮真²・鈴木中²・二本正昭²・桐野文良³・稲葉信幸⁴ (¹工学院大,²中央大,³東京藝大,⁴山形大)

Structure Analysis of Sm-Co_{1-x}Cu_x and Er-Co_{1-y}Cu_y Alloy Thin Films Formed on Cr(100) Single-Crystal Underlayer Mitsuru Ohtake^{1,2}, Ryoma Ochiai², Ataru Suzuki², Masaaki Futamoto², Fumiyoshi Kirino³, and Nobuyuki Inaba⁴ (²Kogakuin Univ., ¹Chuo Univ., ³Tokyo Univ. Arts, ⁴Yamagata Univ.)

はじめに 高 K_u 磁性薄膜は磁気記録媒体などへの応用に向けて研究されており、また、異方性ナノコンポジット磁石の基礎検討にも用いられている.希土類金属 (R) と Coからなる $D2_d$ 型六方規則格子構造を持つ RCo_5 合金は 10⁷ ~10⁸ erg/cm³の高い K_u を持つものが多い¹⁾.また、R 元素の原子番号の増加に伴い (57 ⇒ 68)、 M_s と T_c が増加する傾向が認められる.しかしながら、バルク状態では 66 番以降の R 元素 ($_{66}$ Dy, $_{67}$ Ho, $_{68}$ Er)からなる RCo_5 規則相は 1100 °C 以下において準安定である²⁾. RCo_5 規則相は Coサイトを Cu 原子で部分置換することにより安定化させられることが Sm-Co 合金に対して報告されており³⁾、 $_{6-68}$ R-Co 合金に対しても同様な効果が期待される.本研究では.Cu/Co 組成比 x, y を変化させることにより Sm₁₇(Co_{1-x}Cu_x)₈₃および Er₁₇(Co_{1-y}Cu_y)₈₃ 合金膜 (at. %)を Cr(100)単結晶下地層上に形成し、規則相の安定化を試みた.

実験方法 膜形成には超高真空 MBE 装置を用いた. MgO(100)基板上に 20 nm 厚の Cr(100)下地層を形成し,そ の上に Cu/Co 組成比 x, y を 0 から 1 の間で変化させた状 態で 20 nm 厚の Sm₁₇(Co_{1-x}Cu_x)₈₃ もしくは Er₁₇(Co_{1-y}Cu_y)₈₃ 合金膜を形成した. 膜形成時の基板温度は 500 ℃ とした. 構造評価には RHEED および XRD, 磁気特性評価には VSM を用いた.

<u>実験結果</u> Fig. 1(a)に Sm₁₇(Co_{1-x}Cu_x)₈₃ 膜に対して観察を行 った RHEED パターンを示す.いずれの組成比xに対して も, Fig. 1(c)に示す D2_d(1120)表面に対応する回折パターン が現れており、エピタキシャル膜が形成されていることが 分かる. RHEED 解析から決定した Cr 下地層に対する方位 関係は RT₅(1120)[0001], (1120)[1100] || Cr(100)[011]である. Sm17(Co1-,Cu,)s3 膜は c 軸が面内に存在し、互いに直交した 方位関係を持つ2つのD2dバリアントから構成されている ことが分かった. Fig. 1(b)に Er17(Co1-vCuv)83 膜の RHEED パ ターンを示す. y = 0では、不鮮明なパターンが現れており、結晶化が起きていないことが分かる. $y \ge 0.25$ まで増 加させると、Sm₁₇(Co_{1-x}Cu_x)83 膜と同様に D2_d(1120)表面に 対応する回折パターンが観察されており、Cu 原子による 部分置換により規則相形成が促進されていることが分か る. yが 0.75 まで増加すると, D2d(1120)表面とは異なる回 折パターンが観察されている. したがって, D2d 規則相の 安定化のためには、Cu 原子による置換量の制御も重要で あることが分かる.

1) K. J. Strnat: Handbook of Ferromagnetic Materials (Elsevier Science B. V., New York, 1988). 2) T. B. Massalski: Binary Alloy Phase Diagrams (ASM International, Ohio, 1990). 3) F. Hofer: IEEE Trans. Magn., 6, 221 (1970).

Fig. 1 RHEED patterns observed during formation of (a) $\text{Sm}_{17}(\text{Co}_{1-x}\text{Cu}_x)_{83}$ and (b) $\text{Er}_{17}(\text{Co}_{1-y}\text{Cu}_y)_{83}$ films on Cr(100) underlayers. (c) Schematic diagram of RHEED pattern simulated for $D2_d(11\overline{2}0)$ surface. (d) Epitaxial orientation relationship between $D2_d(11\overline{2}0)$ crystal and Cr(100) underlayer.