Nd-Fe-B 磁石の微細構造が高温時の保磁力に及ぼす影響

原田俊貴*、柳井武志、中野正基、福永博俊(長崎大学) Influence of microstructure of Nd-Fe-B magnet on coercivity at high temperatures T. Harada, T. Yanai, M. Nakano and H. Fukunaga (Nagasaki University)

はじめに

Nd-Fe-B 磁石は、最高の最大エネルギー積をもつ 永久磁石であるが、高温での保磁力劣化が激しく、 温度上昇が見込まれる用途での使用が困難である。 この磁石の保磁力は、磁石の微細構造に依存するこ とが知られており、高温時の微細構造の影響を解明 することが高温での保磁力改善の手がかりとなる。 Sepehri-Amin らは、結晶粒径が及ぼす影響について、 反磁界の大きさに注目して計算機シミュレーション を行っているが¹⁾、本研究では、粒界三重点の大き さに加えて、交換スティフネス定数、結晶表面の磁 気異方性定数が高温時の保磁力に及ぼす影響を、計 算機を用いて解析を行った。

解析方法

Nd₂Fe₁₄B を母相とし、その外側に非磁性粒界相を 配置したモデル磁石を仮定した(Fig.1)。また、結 晶表面の異方性定数の影響を検討する際には母相と 比べて磁気異方性定数のみ低下した磁気劣化層(厚 さ 1.5 nm)を母相表面に配置した。モデルの一辺*L* (48 or 96 nm)をそれぞれ 32~64 等分し、32³~64³ 個の立方体要素に分割することで結晶内部の非一様 な反転を模擬した²⁾。境界条件として周期境界条件 を用いて無限に大きな磁石を仮定した。使用したパ ラメータを Table1 に示す。

Table1 Simulation parameters.				
	Nd ₂ Fe ₁₄ B phase			nonmagnetic
	300 K	400 K	473 K	phase
$K_{\rm u} [{\rm MJ/m^3}]$	4.50	3.01	1.62	0
$J_{\rm s}$ [T]	1.61	1.41	1.22	0
<i>A</i> _c [pJ/m]	8.70	6.66	4.97	0
$K_{\rm d} [{\rm MJ/m^3}]$		$0 \sim K_{\rm u}$		

Fig.1 Simulation model.

解析結果

Fig.2 に保磁力 H_c の温度依存性を示す。図には粒 界三重点の大きさ $T \ge 60$ nm, 交換スティフネス定 数 $A \ge Table1$ に示す値 (A_c), 磁気劣化層の異方性 定数 $K_d \ge table1$ に示す値 (A_c), 磁気劣化層の異方性 定数 $K_d \ge table1$ に示す値 (A_c), 磁気劣化層の異方性 定数 $K_d \ge table1$ に示す値 (A_c), 磁気劣化層の し) とした計算結果に加えて, それらのパラメータのう ちの T, A, K_d のみ変化させた場合の H_c を示してい る。また, 図中には $300 \sim 473$ K での H_c の温度係数 β も示している。図に示されるように, Tの増加, Aの減少, K_d の減少によってそれぞれ保磁力は減少す る。Tの影響は反磁界によるもの²⁾, K_d の影響は異 方性磁界によるもの³⁾ということは既に報告されて いるが, 交換結合の強度も保磁力に影響を及ぼす。 これは, 交換長の減少によるものと考えられる²⁾。

K_dが減少するとβが改善される。このとき、磁壁 が結晶表面でピン止めされることが確認された。こ の結果は保磁力の発現機構をピンニング型にするこ とで保磁力の温度依存性を改善できる可能性を示唆 している。

Fig.2 Temperature dependence of coercivity H_c . β is the temperature coefficient of H_c between 300 to 473 K.

<u>参考文献</u>

- H. Sepehri-Amin *et al.*, Scripta Materialia, **89** (2014) pp.29-32.
- H. Fukunaga *et al.*, J. Appl. Phys., **117** (2015) #17A729.
- H. Fukunaga *et al.*, Jpn. J. Appl. Phys., **29** (1990) pp.1711-1716.