酸化物磁性層による 90 度磁気結合を用いた疑似反強磁性層の作成

永島 玄、平山 雄大、湯浅 裕美 (九州大)

Quasi antiferromagnetic layer by using 90 degree magnetic coupling through magnetic oxide layer G. Nagashima, Y. Hirayama, H. Yuasa

(Kyushu Univ.)

研究目的

反強磁性体における Spin Transfer Torque (STT)が理論的に予測され¹⁾、実験的にも磁化の微小変動が報告 されている^{2,3)}。しかし、隣接する磁気モーメント間の強い交換結合を断ち切る必要があるため、反強磁性体 における STT の明白かつ実用的な実証はされていない。本研究では、反強磁性体の漏洩磁場ゼロという特徴 を持ち、かつ強磁性体で簡単に観測される STT 発振、Spin Transfer Oscillation (STO)を実現させるため、酸 化物磁性層による 90 度磁気結合を用いて疑似反強磁性層を作成した。

実験方法

熱酸化 Si 基板上に、次の膜構成でスパッタした。

Ta 5/Ru 2/Ir₂₂Mn₇₈ t/Co₉₀Fe₁₀ 2 (A)/Fe 1/O₂ x kL/Co₉₀Fe₁₀ 2 (B)/Cu 3/Co₉₀Fe₁₀ 2.5 (C)/Cu 1/Ta 5 (単位: nm) CoFe(A)層は IrMn 層(反強磁性層)により磁化が一方向に固着され、CoFe(A)層と CoFe(B)層で 90 度磁気結 合し CoFe(B)層に疑似反強磁性層ができる。CoFe(C)層はフリー層である。IrMn 膜厚、酸素暴露量を変化させ て試料を作成し、270 ℃で1時間、4.1 kOe 磁場中アニール処理を行った。その後、VSM による磁化測定、 磁気抵抗測定、高分解能断面 TEM 観察、強磁性共鳴(FMR)測定を行った。

実験結果

Fig.1にアニール方向(0 deg)に対して垂直方向(90 deg)に おける、IrMn 膜厚 5 nm、酸素暴露量 50 kL の試料の磁気曲線と CoFe(A)~(C)層の磁化状態を示す。これより、CoFe(A)層と(B) 層は 90 度磁気結合していることがわかる。この試料でのみ、90 度磁気結合が発現した。この原因を高分解能断面 TEM 観察で確 認したところ、IrMn 膜厚が大きいとラフネスにより CoFe(A)層 と(B)層でオレンジピール結合をしていたことがわかった。また、 酸素暴露量が小さいと Fe が酸化されずに残っており、CoFe(A) 層と(B)層で強磁性結合をしていたことがわかった。

Fig. 2 に 90 度磁気結合が確認された試料の FMR 測定結果を示 す。20 GHz 以下でフリー層 (CoFe(C)層) のみ FMR が観測され、 疑似反強磁性層 (CoFe(B)層) の FMR は観測されなかった。こ れは、疑似反強磁性層の FMR が Sub-THz 級であると予測され、 本実験で用いた装置では測定できなかったためである。

以上より、疑似反強磁性層を作成することに成功した。今後 & は、疑似反強磁性層の FMR を観測するため、疑似反強磁性層の _の 磁区形状を制御する予定である。

<u>謝辞</u>

九州大学の松山教授、田中助教、牙さんに VSM 測定で、九州 大学の木村教授、大西助教、山野井さん、中野さんにアニール 処理と FMR 測定でご協力いただきました。この研究の一部はキ ヤノン財団研究助成『産業基盤の創生』により行われました。

参考文献

- 1) A. S. Núñez *et al.*, Phys. Rev. B **73**, 214426 (2006).
- 3) T. Moriyama et al., Appl. Phys. Lett. 106, 162406 (2015).

Fig.1 *MH* curve and the schematic image of magnetization of $(A) \sim (C)$ layers in 90 deg

2) Z. Wei et al., Phys. Rev. Lett. 98, 116603 (2007).