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The basic strategy of designing a new permanent magnet material is to attain a large saturation magnetization MS, a high 
Curie temperature TC, and a strong magnetic anisotropy in a single crystal. The question is then if there are some limits 
to these quantities and, if it is, what are the values and what determine them. The answer to the first question is “yes”. 
Concerning the second and third questions, obviously the magnetization cannot exceed the local atomic magnetization, 
which is limited to ~5 µB (transition metals) or ~10 µB (rare earths) per atomic volume; our experience tells that the 
possible maximum MS probably is not larger than 2.5 T that is attained for Fe70Co30 alloy (owing to subtle balance 
between the magnetic moment and volume, see Fig. 1). TC do not exceed both the intra-atomic coulombic interaction 
and bandwidth, which could be ~5 eV, being much higher than the melting temperature. Therefore, TC ~1500 K might 
be a good estimate of the limit (enough for practical purposes). The magnetic anisotropy originates from the 
combination of a crystal structure and the spin-orbit coupling. The crystal structure gives rise to a crystal field as well as 
anisotropy in kinetic energy. The effects could again reach as large as the bandwidth. On the other hand, the strength of 
the spin-orbit coupling do not exceed ~ 0.1eV even for rare earths. Yet another limitation comes from the exchange 
coupling: if the atoms that possess a large spin-orbit coupling are different from those carrying magnetic moments, the 
exchange coupling between those two types of atoms limits the strength of magnetic anisotropy. Eventually, the 
magnetic anisotropy is limited by the spin-orbit coupling in the case of transition metals and the crystal field (including 
kinetic part) in the case of rare earths. From such arguments, it may be realistic to define the following figures for an 
ultimate permanent magnet material: MS ~ 2.5T, TC ~1500 K, and K1 ~ 50 MJ/m3 
   In order to realize the above figures to some extent, the following considerations might be helpful: First, the 
material should be definitely metallic so that the ferromagnetism can be the most stable magnetic structure. For this it is 
necessary that the main player, Fe, be in a metallic environment. The adding some amount of Co would help to increase 
MS and TC. Moreover, for the ferromagnetic state to be stable, each Fe should take approximately a six coordinate 
bcc-like structure. In such a situation, high TC is also guaranteed. Concerning the magnetic anisotropy, it is impossible 
to attain enough anisotropy with using only transition metal elements: though realizing a highly tetragonal lattice might 
be possible, the spin orbit coupling will not be strong enough to fix the magnetic moment to the lattice. Then the 
maximum of K1 would be ~ 5MJ/m3. To obtain K1 one order of magnitude bigger than that definitely needs the 
existence of rare earths in the system, as is supported by experiences. For example, at law temperature, the magnetic 
anisotropy of rare earth based permanent magnet materials are mostly comes from rare earth elements. Even at higher 
temperature where the coupling between Fe and rare earth ions becomes weak, half of the magnetic anisotropy is still 
owing to the rare earths although the number of rare earth atoms in the unit cell is much smaller than that of Fe atoms.  
   Further detailed discussion about the must for candidates of permanent magnet materials will be discussed on the 
basis of first-principles calculation of magnetic and electronic properties of magnetic materials. 
 

µ

  
Fig. 1 the magnetic moment (left) and the magnetization Ms as functions of the lattice constant and fictitious nuclear 
number. The arrows indicate the lattice constant corresponding the minimum of the total energy of the system. 
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