鉄系超伝導体 Sr₂VFeAsO_{3-d} の電子磁気特性と Nb ドープ試行

山口道太郎, 岩崎秀, 的場正憲, 神原陽一

(慶応大)

Electronic and magnetic properties of Iron-based superconductor Nb-doped Sr₂VFeAsO_{3-d} M. Yamaguchi, S. Iwasaki, M. Matoba, and Y. Kamihara (Keio Univ.)

1 はじめに

鉄系超伝導体 Sr₂VFeAsO_{3- δ} は, $\delta = 0$ の仕込み組成で, 超伝導転移温度 (T_c^{onset})が 37.2 K であり, 0 K での上部臨界磁東密度 (μ_0H_{c2})が 200 T を超えると報告されている^{1,2)}. $\mu_0H_{c2} > 200$ T は Nb-Ti/Nb₃Sn 系超伝導体などに比べて高く, Sr₂VFeAsO_{3- δ} は MRI の超伝導線材などへの応用が期待されている. 超伝導線材では, 高い μ_0H_{c2} を示すだけでなく, 高磁場下で高い超伝導臨界電 流密度 (J_c)を示すことも重要である. 一方, $T_c^{\text{onset}} = 37.2$ K は鉄系超伝導体 SmFeAsO などに比べ低い. T_c に対して, V 原子由来の フェリ磁性と T_c の相関が不明である³⁾. 本研究では, Sr₂VFeAsO_{3- δ} の V サイトに Nb をドープした Sr₂V_{1-x}Nb_xFeAsO_{3- δ} の合成 と結晶相, 電気抵抗率, 磁化の評価を報告する.

2 実験方法

石英管を用いた固相反応により、仕込み量 d = 0の Sr₂VFeAsO_{3-d}、仕込み量 d = 0, x = 0.2, 1の Sr₂V_{1-x}Nb_xFeAsO_{3-d}の多結晶 試料を合成した. 合成された全試料において、X線回折装置 (Rigaku Co., Ltd., RINT2500Ultra18, Cu K α radiation) により、X-ray diffraction (XRD) パターンを測定し、相同定を行った. さらに、最小二乗法を利用して格子定数を求めた.

nominal Sr₂VFeAsO₃ において, ヘリウム循環式 GM 冷凍機 (Sumitomo Heavy Industries Ltd., SRDK-101D) を用いた電気抵抗 率測定装置により, 四端子法で電気抵抗率 (ρ) の温度 (T) 依存性を測定した. また, 超伝導量子干渉磁束計を用いた磁気特性測定装置 (Quantum Design Inc., MPMS) により, 2 K, 4.2 K, 10 K, 20 K で磁化 (M) の磁束密度 ($\mu_0 H$) 依存性を測定した. M-H カーブに 対して, 拡張 Bean-Model⁴⁾ を仮定した磁気超伝導臨界電流密度 (Magnetic J_c) を求めた.

3 結果および考察

全試料の XRD パターンを Fig. 1 に示す. nominal Sr₂VFeAsO₃ では, Sr₂VFeAsO₃ の回折ピークがあり, 主相であった. nominal Sr₂NbFeAsO₃ では, Sr₂NbFeAsO₃ と思われる回折ピークはなく, 主相は Sr₄Nb₂O₉ であった. nominal Sr₂V_{0.8}Nb₀.2FeAsO₃ では, Sr₂VFeAsO₃ の回折ピークがあり, 主相であったが, 異相として Sr₄Nb₂O₉ が確認された. これより, V サイトへの Nb の固溶限界は 20 %より小さい.

nominal Sr₂VFeAsO₃ の電気抵抗率測定では, 電気抵抗ゼロを確認でき, $T_c^{\text{onset}} = 35.1$ K であった. 磁化測定では, 全温度で完全反磁性を確認でき, ヒステリシス曲線を示した. このヒステリシス曲線のループの高さから求めた磁気超伝導臨界電流密度 (Magnetic J_c) の磁東密度 ($\mu_0 H$) 依存性を Fig. 2 に示す. 2 K において, Magnetic $J_c \cong 3000$ Acm⁻² であり, 実用上必要な 10⁵ Acm⁻² の 100 分の 1 であった.

Fig. 1 Powder XRD patterns of nominal $Sr_2VFeAsO_3$, nominal $Sr_2V_{0.8}Nb_0.2FeAsO_3$ and nominal $Sr_2NbFeAsO_3$ samples. The vertical bars represent calculated positions of Bragg diffractions of $Sr_2VFeAsO_3$ (black) and $Sr_4Nb_2O_9$ (blue).

参考文献

- 1) X. Zhu, et al., Phys. Rev. B 79, 220512 (2009).
- 2) G. R. Stewart, Rev. Mod. Phys. 83, 1589 (2011).
- 3) Y. Tojo unpublished (2016).

Fig. 2 Magnetic field $(\mu_0 H)$ dependence of magnetic critical current density (J_c) of nominal Sr₂VFeAsO₃ sample at 2 K (closed red circles), 4.2 K (closed blue circles), 10 K (closed green triangles) and 20 K (open black triangles).

⁴⁾ E. M. Gyorgy, et al., Appl. Phys. Lett. 55, 283 (1989).